TY - JOUR A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Nitschke, R. T1 - Simple Tool for the Standardization of Confocal Spectral Imaging Systems KW - Standards KW - Fluorescence reference material KW - Quality assurance KW - Fluorescence microscopy PY - 2005 SN - 1439-4243 SN - 1863-7809 VL - 7 IS - 3 SP - 18 EP - 19 PB - GIT-Verl. CY - Darmstadt AN - OPUS4-11070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Monte, Christian A1 - Pfeifer, Dietmar T1 - Standards in Fluorescence Spectroscopy KW - Standard KW - Fluorescence KW - Reference material KW - Quality assurance KW - Spectrofluorometer PY - 2005 SN - 1434-2634 VL - 9 IS - 6 SP - 29 EP - 31 PB - GIT Verl. CY - Darmstadt AN - OPUS4-11556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Resch-Genger, Ute A1 - Pfeifer, Dietmar A1 - Hoffmann, Katrin A1 - Flachenecker, Günter A1 - Hoffmann, Angelika A1 - Monte, C. ED - Resch-Genger, Ute ED - O.S. Wolfbeis, T1 - Linking fluorometry to radiometry with physical and chemical transfer standards: instrument characterization and traceable fluorescence measurements N2 - Problems associated with the measurement of photoluminescence are briefly reviewed, including relevant instrument parameters affecting these measurements. Procedures for the characterization of relevant instruments are discussed, focusing on spectrofluorometers, and fit-for-purpose methods including suitable standards are recommended. The aim here is to increase the awareness of the importance of reliable instrument characterization and to improve the comparability of measurements of photoluminescence. KW - Calibration KW - Emission standards KW - Fluorescence intensity standards KW - Fluorescence standards KW - Quality assurance KW - Spectral correction PY - 2008 SN - 978-3-540-75206-6 U6 - https://doi.org/10.1007/4243_2008_054 SN - 1617-1306 N1 - Serientitel: Springer Series on Fluorescence – Series title: Springer Series on Fluorescence VL - 5 IS - Part II SP - 65 EP - 99 PB - Springer AN - OPUS4-18301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Nirmalananthan-Budau, Nithiya A1 - Tavernaro, Isabella T1 - Engineered Nanomaterials- Novel Approaches for Risk Assessment and Safe-by-Design N2 - The overall interest in nanotoxicity, triggered by the increasing use of nanomaterials in the material and life sciences, and the synthesis of an ever increasing number of new functional nanoparticles calls not only for standardized test procedures1,2 and for efficient approaches to screen the potential genotoxicity of these materials, but also for standardized and validated methods for surface analysis. 4,5 The analysis and quantification of surface chemistry is hence in the focus of an increasing number of standardization organizations and interlaboratory comparisons with different analytical methods are being done.5 For the monitoring of nanomaterial synthesis and the fast assessment of the number of functional groups such as carboxyl and amino functionalities, which are very commonly used functionalities in the life sciences, simple and validated methods are needed that can be performed with common laboratory instrumentation. 5,6 Here we provide a brief overview of the ongoing research in division Biophotonics employing quantitative NMR (qNMR), conductometry, and colorimetric and fluorometric optical assays for the determination of the total and the accessible number of carboxyl and amino groups on differently sized polymer and silica nano- and microparticles.5-7 T2 - Workshop NanoRiskSD project CY - Berlin, Germany DA - 09.06.2022 KW - Nanoparticle KW - Surface analysis KW - Standardization KW - Quality assurance KW - Validation KW - qNMR KW - Silica KW - Polymer KW - Fluorescence KW - Assay KW - Conductometry KW - Method comparison KW - Analytical sciences PY - 2022 AN - OPUS4-54999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute T1 - Tumore abbilden, Biomarker nachweisen, Messungen standardisieren N2 - Zu den am häufigsten eingesetzten Analysemethoden in den Lebens- und Materialwissenschaften gehören Lumineszenzmethoden. Sie nutzen die Emission von Licht nach Absorption von Energie, um Signale zu erzeugen, und umfassen spektroskopische und mikroskopische Messungen. KW - Quality assurance KW - Sensor KW - Imaging KW - Reference material KW - Nano KW - Particle KW - Nanomaterial KW - Upconversion KW - Nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Excitation KW - Power density KW - Single particle KW - Brightness KW - NIR PY - 2021 SP - 75 EP - 77 PB - GDCH AN - OPUS4-53526 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Würth, Christian A1 - Güttler, Arne A1 - Resch-Genger, Ute T1 - Reliable Determination of the Signal-Relevant Spectroscopic Key Characteristics of Luminescent Reporters and Optical Probes for Imaging in the vis/NIR/SWIR N2 - Introduction. Comparing different emitter classes and rationally designing the next generation of molecular and nanoscale probes for bioimaging applications require accurate and quantitative methods for the measurement of the key parameter photoluminescence quantum yield f.1 f equals the number of emitted per number of absorbed photons. This is particularly relevant for increasingly used fluorescence imaging in the short wave-infrared region (SWIR) ≥ 900 nm providing deeper penetration depths, a better image resolution, and an improved signal-to-noise or tumor-to-background ratio.2, 3 However, spectroscopic measurements in the SWIR are more challenging and require specific calibrations and standards. T2 - EMIM 2021 CY - Göttingen, Germany DA - 24.08.2021 KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Reference material KW - Reliability KW - Nano KW - Particle KW - Method KW - Quality assurance PY - 2021 AN - OPUS4-53233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute T1 - Standardization of fluorescence measurements: Design, development, validation, and fabrication of format-adaptable fluorescence standards for intensity, spectral, and temporal quantities N2 - Photoluminescence techniques are amongst the most widely used tools in the material and life sciences, with new and exciting applications continuously emerging, due to their many advantages like comparative ease of use, unique sensitivity, non-invasive character, and potential for multiplexing, remote sensing, and miniaturization. Drawbacks are , however, signals, that contain unwanted wavelength- and polarization contributions from instrument-dependent effects, which are time-dependent due to the aging of instrument components, and difficulties to measure absolute fluorescence intensities. Thus, there is a considerable need for standards for intensity, spectral, and temporal fluorescence quantities to meet the increasing need for instrument performance validation and global trends to harmonize physicochemical measurements. In this respect, instrument calibration strategies together with different types of fluorescence standards are presented as well as design concepts for robust, easy-to-use, and format-adaptable fluorescence standards useable for the determination of different fluorescence parameters and a broad variety of fluorescence techniques. T2 - SALSA-Kolloquien CY - Berlin, Germany DA - 07.06.2016 KW - Fluorescence KW - Standard KW - Quality assurance KW - Spectral correction KW - Quantum yield PY - 2016 AN - OPUS4-37070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Nitschke, R. ED - O.S. Wolfbeis, ED - Resch-Genger, Ute T1 - Comparability of fluorescence microscopy data and need for instrument characterization of spectral scanning microscopes N2 - The aim of this article is to illustrate the need for an improved quality assurance in fluorescence microscopy. From the instrument-side, this can be achieved by a better understanding, consideration, and regular control of the instrument-specific parameters and quantities affecting measured fluorescence signals. Particularly, the need for requirements on physical- and chemical-type instrument standards for the characterization and performance validation of spectral fluorescence microscopes (SFMs) is discussed and suitable systems are presented. Special emphasis is given to spectral fluorescence standards and to day-to-day intensity standards for SFMs. Fluorescence standards and well-characterized fluorescence microscopes are the first and essential steps towards the comparability and the understanding of the variability in fluorescence microscopy data in medical and life sciences. In addition, standards enable the distinction between instrument-specific variations and fluorescent label- or probe-related uncertainties as well as generally sample-related effects. KW - Fluorescence spectroscopy KW - Fluorescence microscopy KW - Quality assurance KW - Calibration KW - Standard KW - Comparability KW - Quantification PY - 2008 SN - 978-3-540-70570-3 U6 - https://doi.org/10.1007/4243_2008_028 SN - 1617-1306 N1 - Serientitel: Springer Series on Fluorescence – Series title: Springer Series on Fluorescence VL - 6 IS - Part A SP - 89 EP - 116 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-18995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Pfeifer, Dietmar ED - Chris D. Geddes, T1 - Simple calibration and validation standards for fluorometry KW - Fluorescence KW - Standard KW - Spectral correction KW - Emission KW - Glass KW - Quantum yield KW - Fluorescence intensity KW - Quality assurance PY - 2009 SN - 978-0-387-88721-0 U6 - https://doi.org/10.1007/978-0-387-88722-7_1 SN - 1573-8086 N1 - Serientitel: Reviews in Fluorescence – Series title: Reviews in Fluorescence VL - 4 SP - 1 EP - 31 PB - Springer Science + Business Media AN - OPUS4-19830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Würth, Christian A1 - Behnke, Thomas A1 - Hoffmann, Angelika A1 - Pfeifer, Dietmar A1 - Engel, A. T1 - The toolbox of fluorescence standards: Flexible calibration tools for the standardization of fluorescence-based measurements N2 - To improve the reliability of fluorescence data in the life and material sciences and to enable accreditation of fluorescence techniques, standardization concepts are required that guarantee and improve the comparability of fluorescence measurements. At the core of such concepts are simple and evaluated fluorescence standards for the consideration of instrument-specific spectral and intensity distortions of measured signals and for instrument performance validation (IPV). Similarly in need are fluorescence intensity standards for the quantification from measured intensities and for signal referencing, thereby accounting for excitation light-induced intensity fluctuations. These standards should be preferably certified, especially for use in regulated areas like medical diagnostics. This encouraged us to develop liquid and solid standards for different fluorescence parameters and techniques for use under routine measurement conditions in different formates. Special emphasis was dedicated to the determination and control of the spectral responsivity of detection systems, wavelength accuracy, homogeneity of illumination, and intensity referencing for e.g. spectrofluorometers, fluorescence sensors and confocal laser scanning fluorescence microscopes. Here, we will present design concepts and examples for mono- and multifunctional fluorescence standards that provide traceability to radiometric units and present a first step towards a toolbox of standards. KW - Fluorescence KW - Fluorescence standard KW - Calibration tool KW - Spectral fluorescence standard KW - Intensity standard KW - Instrument performance validation KW - Quality assurance KW - Traceability KW - Glass KW - Liquid standard PY - 2010 U6 - https://doi.org/10.1117/12.853133 SN - 0277-786X SN - 0038-7355 SN - 0361-0748 VL - 7666 IS - 76661J SP - 1 EP - 12 PB - Soc. CY - Redondo Beach, Calif. [u.a.] AN - OPUS4-21595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -