TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Pauli, Jutta A1 - Weigert, Florian T1 - Quantitative optical-spectroscopic characterization of luminescent nanomaterials - Photoluminescence Quantum Yields N2 - Accurate and quantitative photoluminescence measurements are mandatory for the comparison of different emitter classes and the rational design of the next generation of molecular and nanoscale reporters as well as for most applications relying on their luminescence features in the life and material sciences and nanobiophotonics. In the following, procedures for the determination of the spectroscopic key parameter photoluminescence quantum yield, i.e., the number of emitted per absorbed photons, in the UV/vis/NIR/SWIR are presented including pitfalls and achievable uncertainties and material-specific effects related to certain emitter classes are addressed. Special emphasis is dedicated to luminescent nanocrystals. T2 - International Workshop on "Emerging Nanomaterials for Displays and SSL" CY - Dresden, Germany DA - 11.11.2021 KW - Nano KW - Nanomaterial KW - Nanocrystal KW - Semiconductor quantum dot KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Brightness KW - NIR KW - SWIR KW - Method KW - Uncertainty KW - Rreference material PY - 2021 AN - OPUS4-53783 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Frenzel, Florian A1 - Würth, Christian A1 - Grauel, Bettina A1 - Hirsch, T. A1 - Haase, M. T1 - Measuring the Upconversion Luminescence of Ensemble and Single Particle Lanthanide-Based Upconversion Nanocrystals N2 - Lanthanide-based upconversion nanoparticles (UCNPs) like hexagonal 𝛽-NaYF4 UCNPs doped with Yb3+ and Er3+, which efficiently convert 976 nm light to ultraviolet, visible, and near infrared photons, offer new strategies for luminescence-based sensing, barcoding, and Imaging. Their upconversion (UC) luminescence (UCL) features like UCL intensity, quantum yield, relative spectral distribution / UCL luminescence color, and luminescence decay kinetics are, however, strongly influenced by particle size, dopant ion concentration, particle architecture, surface chemistry including presence and thickness of surface passivation and shielding shells, microenvironment/presence of quenchers with high energy vibrations, and excitation power density (P). We present here a comprehensive study of the influence of excitation power density on the UCL features of different types of UCNPs, focusing on Yb3+ and Er3+ co-doped NaYF4 core-only and core-shell nanostructures with different sizes and doping ion concentration, which underlines the importance of P-dependent optimum dopant concentrations for UCNP performance and the potential of P-tuning of UCL. T2 - Materials Challenges in Alternative & Renewable Energy 2021 (MCARE 2021) CY - Online meeting DA - 19.07.2021 KW - Fluorescence KW - Lifetime KW - Method KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Upconversion KW - Nano KW - Particle KW - Single particle spectroscopy KW - Quantum yield KW - Microscopy KW - Photophysics PY - 2021 AN - OPUS4-53111 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute T1 - Tumore abbilden, Biomarker nachweisen, Messungen standardisieren JF - Nachrichten aus der Chemie N2 - Zu den am häufigsten eingesetzten Analysemethoden in den Lebens- und Materialwissenschaften gehören Lumineszenzmethoden. Sie nutzen die Emission von Licht nach Absorption von Energie, um Signale zu erzeugen, und umfassen spektroskopische und mikroskopische Messungen. KW - Quality assurance KW - Sensor KW - Imaging KW - Reference material KW - Nano KW - Particle KW - Nanomaterial KW - Upconversion KW - Nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Excitation KW - Power density KW - Single particle KW - Brightness KW - NIR PY - 2021 SP - 75 EP - 77 PB - GDCH AN - OPUS4-53526 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Cui A1 - Otto, S. A1 - Dorn, M. A1 - Kreidt, E. A1 - Lebon, J. A1 - Sršan, L. A1 - Di Martino-Fumo, P. A1 - Gerhards, M. A1 - Resch-Genger, Ute A1 - Seitz, M. A1 - Heinze, K. T1 - Deuterated molecular ruby with record luminescence quantum yield JF - GDCh Angewandte Chemie N2 - The recently reported luminescent chromium(III) complex 13+ ([Cr(ddpd)2]3+; ddpd=N,N’-dimethyl-N,N’-dipyridine-2-yl-pyridine-2,6-diamine) shows exceptionally strong near-IR emission at 775 nm in water under ambient conditions (F=11%) with a microsecond lifetime as the ligand design in 13+ effectively eliminates non-radiative decay pathways, such as photosubstitution, back-intersystem crossing, and trigonal twists. In the absence of energy acceptors, such as dioxygen, the remaining decay pathways are energy transfer to high energy solvent and ligand oscillators, namely OH and CH stretching vibrations. Selective deuteration of the solvents and the ddpd ligands probes the efficiency of these oscillators in the excited state deactivation. Addressing these energytransfer pathways in the first and second coordination sphere furnishes a record 30% quantum yield and a 2.3 millisecond lifetime for a metal complex with an earth-abundant metal ion in solution at room temperature. The combined fundamental insights will pave the way for selective design strategies in the field of luminescent complexes with earth-abundant metal ions. KW - Record luminescence quantum yield KW - Phorsphorescence KW - Cr-complex KW - Lifetime PY - 2018 DO - https://doi.org/10.1002/ange.201711350 DO - https://doi.org/10.1002/anie.201711350 SN - 1521-3773 VL - 57 IS - 4 SP - 1112 EP - 1116 PB - Wiley-VCH Verlag & Co. KGaA CY - Weinheim AN - OPUS4-45085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Kage, Daniel A1 - Weigert, Florian A1 - Martynenko, Irina A1 - Dhamo, Lorena A1 - Soares, J. X. T1 - Luminescent nanocrystals – Photophysics and applications for lifetime multiplexing N2 - Bioanalytical, diagnostic, and security applications require the fast and sensitive determination of a steadily increasing number of analytes or events in parallel in a broad variety of detection formats.[1,2] Ideal candidates for spectral encoding and multiplexing schemes are luminescent nanocrystals like semiconductor quantum dots (QDs), particularly Cd-containing II/VI QDs with their narrow and symmetric emission bands. With the availability of relatively simple and inexpensive instrumentation for time-resolved fluorescence measurements, similar strategies utilizing the compound-specific parameter fluorescence lifetime or fluorescence decay kinetics become increasingly attractive.[3-5] The potential of different types of QDs like II/VI, III/V and Cd-free ternary QDs such as AgInS (AIS) QDs for lifetime-based encoding and multiplexing has been, however, barely utilized, although the lifetimes of these nanocrystals cover a time windows which is barely accessible with other fluorophores. Here we present a brief insight into the photophysics of AIS QDs and show the potential of dye- and QD-encoded beads for lifetime-based encoding and detection schemes in conjunction with flow cytometry and fluorescence lifetime imaging microscopy T2 - Nanax 2019 CY - Hamburg, Germany DA - 16.09.2019 KW - Nano KW - Microparticle KW - Bead KW - Encoding KW - Lifetime KW - Multiplexing KW - Flow cytometry KW - Bead-based assay KW - Fluorescence KW - Dye KW - LT-FCM KW - Time-resolved flow cytometry KW - Method PY - 2019 AN - OPUS4-49039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Nirmalananthan-Budau, Nithiya A1 - Pauli, Jutta A1 - Hoffmann, Katrin T1 - Photoluminescence at BAM – Photoluminescence at BAM – Photophysical Studies, Quantum Yield Measurements, Multiplexing Strategies, and Standards N2 - Photoluminescence applications in the life and material sciences require bright molecular and nanocrystalline emitters, stimuli-responsive optical probes, signal enhancement, multiplexing, and barcoding strategies and traceable methods to quantify the signal-relevant optical properties of luminescent materials at the ensemble and single molecule/particle level. In this context, current research at Division Biophotonics of BAM is presented ranging from dye and nanocrystal photophysics, absolute measurements of photoluminescence quantum yields in the UV/vis/NIR/SWIR, lifetime multiplexing, and the development of different types of fluorescence standards for validating optical-spectroscopic measurements. T2 - Institutskolloquium IPHT CY - Jena, Germany DA - 22.10.2019 KW - Surface group analysis KW - NIR KW - SWIR KW - Quantum dot KW - Lanthanide KW - Cleavable probe KW - Lifetime KW - Multiplexing KW - Sensor KW - Assay PY - 2019 AN - OPUS4-49360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Weigert, Florian A1 - Frenzel, Florian A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Martynenko, Iris A1 - Dhamo, Lorena T1 - Optical properties of different types of luminescent nanocrystals at the ensemble and single emitter level N2 - Applications of luminescent nanomaterials like semiconductor nanocrystals (QDs) and lanthanide-based upconversion nanocrystals (UCNPs) in the life sciences such as bioimaging studies or their use as reporter in assays call for a correlation of the photoluminescence (PL) properties of these nanomaterials on ensemble and single particle levels. This is particularly relevant within the context of continuously decreasing detection limits. Aiming at optimum nanomaterials for spectroscopic and microscopic applications, we examine the optical properties of QDs like II/VI QDs and cadmium-free AgInS2/ZnS QDs (AIS/ZnS) and UCNPs of different chemical composition, size, and particle architecture for ensembles and single particles. This includes PL spectra, PL quantum yields (ΦF), brightness values, blinking behavior, and PL decay kinetics. For UCNPs with their nonlinear spectrally converted PL excited by sequential multiphoton absorption, these measurements were also done as a function of excitation power density (P). Special emphasis is dedicated to the performance parameters ΦF and brightness, that determine signal size and provide a measure for nanocrystal quality.[1-5] Systematic studies of the excitation energy dependence (EED) [6] of the PL properties of II/VI and ternary AgInS2/ZnS QDs reveal the potential of this relatively simple method for providing insights into the electronic energy structure of QDs. The intrinsic nature of the inhomogeneous broadening of the PL bands of AIS/ZnS QDs was confirmed by single particle spectroscopy.[5] By combining P-dependent integration spectroscopy and single particle measurements of UCNPs, using a new custom-made setup, consisting of different lasers, an inverted microscope, different detectors, and an AFM, we could study the P-dependent optical properties of these nonlinear emitters from ~10 W/cm2 up to ~105 W/cm2. These results provide optimum dopant ion concentrations for bioanalytical, spectroscopic, and microscopic applications of UCNP. Acknowledgement. Financial support by grants RE1203/12-3 and RE1203/20-1 (support of F. Weigert, L. Dhamo, and F. Frenzel) from German Research Council (DFG) is acknowledged. T2 - 17th Internatinal Congress on Photobiology CY - Barcelona, Spain DA - 25.08.2019 KW - Nanoparticle KW - Quantum dot KW - Fluorescence KW - Single particle spectroscopy KW - Mechanism KW - Lifetime KW - Exciton KW - Ternary quantum dot KW - AIS QD KW - Synthesis KW - Shell KW - Surface chemistry PY - 2019 AN - OPUS4-48877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Andresen, Elina A1 - Saleh, Maysoon I. A1 - Würth, Christian A1 - Rühle, Bastian A1 - Radnik, Jörg A1 - Prinz, Carsten T1 - Influence of Surface Chemistry and Size on the Stability of β-NaYF4:Yb,Er Nanocrystals in Various Environments N2 - The use of inorganic lanthanide-doped upconversion nanoparticles (UCNP) in bioimaging and cellular studies requires biocompatible particles. One possible cause of UCNP toxicity is the release of potentially harmful fluoride and lanthanide ions as revealed by dilution studies in aqueous environments, particularly under high dilution conditions. To address this issue, suitable surface coatings preventing such effects in combination with fast screening methods suited for online monitoring and in situ analyses are desired. Here we present systematic studies of differently sized β-NaYF4:Yb,Er UCNP stabilized with different surface coatings and hydrophilic ligands varying in binding strength to the particle surface in various aqueous environments at different temperatures and UCNP concentrations. The concentration of the fluoride and lanthanide ions released upon particle dissolution was quantified electrochemically with a fluoride ion-sensitive electrode and inductively coupled plasma optical emission spectrometry (ICP-OES) and monitored fluorometrically, thereby exploiting the sensitivity of the upconversion luminescence to changes in size and surface chemistry. Moreover, changes in surface chemistry were determined with X-Ray photoelectron spectroscopy (XPS). Based upon our results, we could derive optimum screening parameters for UCNP stability studies and determine conditions and coating procedures and ligands for enhancing UCNP stability in aqueous environments. T2 - UPCON2021 CY - Online meeting DA - 06.04.2021 KW - Fluorescence KW - Lifetime KW - Method KW - Quantification KW - Stability KW - Coating KW - Surface chemistry KW - Lanthanide KW - Fluoride KW - Electrochemistry KW - ICP-OES KW - Upconversion KW - Nano KW - Particle KW - Aging KW - Quality assurance KW - Mass spectrometry KW - XPS PY - 2021 AN - OPUS4-52411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Kage, D. A1 - Hoffmann, Katrin A1 - Abbandonatoa, G. A1 - Weigert, F. T1 - Biophotonics and analytics – Quantum Yields of Single Emitters and Lifetime Multiplexing N2 - An increasing number of (bio)analytical techniques rely on multiparametric analyses and the measurement of a very small number of emitters. While the former implies encoding or labeling by means of easily distinguishable properties like luminescence color or lifetime in conjunction with high-throughput optical-spectroscopic methods such as flow cytometry, the latter requires methods suitable for the characterization of the optical properties of single emitters. Here, we present the use of fluorescence correlation spectroscopy (FCS) for the relative determination of the key parameter photoluminescence quantum yield [5] and first results from flow cytometry measurements in the time-domain with a custom-designed instrument with luminescence lifetime analysis capability. T2 - ICENAP-Projekttreffens CY - Reims, Italy DA - 20.09.2018 KW - Single emitter KW - Semiconductor quantum dot KW - Lifetime KW - Multiplexing KW - Single particle spectroscopy KW - Photoluminescence quantum yield PY - 2018 AN - OPUS4-46385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wang, Cui A1 - Resch-Genger, Ute A1 - Otto, S. A1 - Dorn, M. A1 - Heinze, K. T1 - Luminescent TOP nanosensors for simultaneously measuring temperature, oxygen, and pH at a single excitation wavelength N2 - Two nanosensors for simultaneous optical measurements of temperature (“T”), oxygen (“O”), and pH (“P”) have been designed. These “TOP” nanosensors are based on 100 nm-sized silica-coated polystyrene nanoparticles (PS-NPs) doped with the near infrared emissive oxygen- and temperature-sensitive chromium(III) complex ([Cr(ddpd)2][BPh4]3 CrBPh4)[1][2] and an inert reference fluorescence dye (Nile Red NR or 5,10,15,20tetrakis-(pentafluorophenyl) porphyrin TFPP) and are covalently labeled with the pHsensitive fluorophore fluorescein isothiocyanate (FITC). These emitters can be excited at the same wavelength and reveal distinguishable emission spectra suitable for ratiometric intensity-based and time-resolved studies in the visible and near infrared spectral region. The core-shell nanostructure of these sensors reveals high colloidal stability in various aqueous media. Studies in PBS buffer solutions and in a model body liquid demonstrate the applicability of the TOP nanosensors for optically detecting the three bioanalytically and biologically relevant analytes temperature, oxygen and pH simultaneously at the same position. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Sensor KW - Nanoparticle KW - Nanosensor KW - Fluorescence KW - Oxygen KW - Temperature KW - pH KW - Ratiometric KW - Lifetime KW - NIR KW - Cr(III) complex KW - FITC KW - Dye KW - Environment KW - Medical diagnostics PY - 2019 AN - OPUS4-47698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -