TY - JOUR A1 - Schoknecht, Ute A1 - Kalbe, Ute A1 - Heisterkamp, I. A1 - Kretzschmar, M. A1 - Gartiser, S. A1 - Happel, O. A1 - Ilvonen, O. T1 - Release of substances from joint grouts based on various binder types and their ecotoxic effects N2 - Background: The leaching of substances and the ecotoxic effects of eluates were studied for joint grouts that are based on various types of binders. Eight products, two of them containing either epoxy resin, polybutadiene or polyurethane binders, or modifed cement, were investigated using harmonized leaching tests for construction products in combination with ecotoxicity tests on algae, daphnia, luminescent bacteria, fish eggs and mutagenicity in accordance with CEN/TR 17105. In addition to basic parameters, such as pH, TOC, and inorganic components, organic substances in the eluates were analysed by gas and liquid chromatography in combination with mass spectrometry. Quantitative analyses in combination with ecotoxicity data on selected substances were used to deduce which substances cause the observed ecotoxic effects. Results: Different patterns of ecotoxic effects were observed in joint grouts with different binder types. The most ecotoxic effects were observed in epoxy resin-based products, followed by polybutadiene-based products. Fewer ecotoxic effects were observed in polyurethane-based products and modifed cements. Some of these showed no ecotoxicity. Some of the substances in the eluates were identified and related to ecotoxic effects. 4-Tert-butylphenol and amines probably contributed to the ecotoxic effects of at least one of the epoxy resin-based renders, whereas cobalt is assumed to contribute to the toxic effect on algae of one of the polybutadiene-based products. However, only some of the leached substances could be identifed, and only some of the ecotoxic effects can be explained by the available information on the composition of eluates and known ecotoxic profiles of the identified substances. Conclusions: Ecotoxicity tests on eluates from leaching tests indicate whether environmentally hazardous substances can be leached from construction products. Combined ecotoxicity tests and chemical analysis of eluates from EU-wide harmonized leaching tests for construction products can provide information on substances that cause these effects. This supports the identifcation and development of environmentally friendly construction products. This study confirmed that ecotoxicity tests in accordance with CEN/TR 17105 are a tool well-suited to support the implementation of the European Commission’s zero pollution vision for 2050 and to reduce pollution to levels no longer considered harmful to health and natural ecosystems. KW - Joint grouts KW - Leaching KW - Ecotoxixity PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-562392 SN - 2190-4707 VL - 34 IS - 1 SP - 1 EP - 16 PB - Springer Nature CY - Berlin AN - OPUS4-56239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heisterkamp, I. A1 - Ratte, M. A1 - Schoknecht, Ute A1 - Gartiser, S. A1 - Kalbe, Ute A1 - Ilvonen, O. T1 - Ecotoxicological evaluation of construction products: inter-laboratory test with DSLT and percolation test eluates in an aquatic biotest battery N2 - Background A European inter-laboratory test with 29 participating laboratories investigated whether a battery of four ecotoxicological tests is suitable for assessing the environmental compatibility of construction products. For this purpose, a construction product was investigated with the dynamic surface leaching test (DIN CEN/TS 16637-2) and the percolation test (DIN CEN/TS 16637-3). The eluates were produced centrally by one laboratory and were tested by the participants using the following biotests: algae test (ISO 8692), acute daphnia test (ISO 6341), luminescent bacteria test (DIN EN ISO 11348), and fish egg test (DIN EN ISO 15088). As toxicity measures, EC50 and LID values were calculated. Results Toxic effects of the eluates were detected by all four biotests. The bacteria test was by far the most sensitive, followed by the algae test and the daphnia test; the fish egg test was the least sensitive for eluates of both leaching tests. The toxicity level of the eluates was very high in the bacteria, daphnia, and algae test, with lowest ineffective dilution values of LID = 70 to LID = 13,000 and corresponding EC50 values around or even below 1 volume percent. The reproducibility (approximated by interlaboratory variability) of the biotests was good (< 53%) to very good (< 20%), regardless of the toxicity level of the eluates. The reproducibility of the algae test was up to 80%, and thus still acceptable. Conclusion It can be confirmed that the combination of leaching and ecotoxicity tests is suitable to characterize with sufficient reproducibility the environmental impact posed by the release of hazardous substances from construction products. KW - Inter-laboratory test KW - Construction products KW - Leaching tests KW - Ecotoxicity tests KW - Grouts PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-529198 VL - 33 IS - 1 SP - Article number: 75 PB - Springer AN - OPUS4-52919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoknecht, Ute A1 - Kalbe, Ute A1 - Van Zomeren, A. A1 - Hjelmar, O. T1 - Laboratory leaching tests on treated wood according to different harmonised test procedures N2 - -Background- Laboratory leaching tests on treated wood were performed during a European robustness study in the framework of the validation of a tank leaching test procedure that has been proposed for construction products in order to determine the potential release of dangerous substances which can be transferred to soil and groundwater. The release of substances has to be determined also for materials treated with biocidal products according to the requirements of the European Biocidal Products Regulation. A similar leaching test procedure was already harmonised for treated wood for this purpose. Both test procedures were applied in parallel to wood treated with the same preservative to investigate whether the results of these tests can replace each other. Additional experiments were performed to further investigate unexpected effects of L/A ratio on leaching of copper and duration of storage of treated test specimens. -Results- Both procedures generate similar results concerning cumulative emissions of tebuconazole, copper, dissolved organic carbon and total nitrogen. The emission rates with time are in comparable ranges for both leaching protocols. Emissions of copper increased with decreasing L/A ratios. Strong correlation of copper concentrations and dissolved organic carbon as well as total nitrogen concentrations in eluates indicates that this observation is caused by co-elution of copper with organic substances. Duration of storage of treated test specimens affected emissions for the investigated wood preservative. -Conclusions- Based on these findings, results from both test procedures can be used to describe leaching characteristics and avoid double testing of treated wood to fulfil the requirements of the European regulations for either biocides or construction products. Leaching of substances from treated wood is a complex process that depends on its chemical composition and ageing processes. KW - Construction products KW - Biocidal product KW - Emission KW - Leaching KW - Tank leaching test KW - Treated wood KW - European regulation PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-317320 UR - http://www.enveurope.com/content/26/1/25 SN - 2190-4715 SN - 2190-4707 VL - 26 SP - 25, 1 EP - 10 PB - Springer CY - Berlin ; Heidelberg AN - OPUS4-31732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bandow, N. A1 - Aitken, M. D. A1 - Geburtig, Anja A1 - Kalbe, Ute A1 - Piechotta, Christian A1 - Schoknecht, Ute A1 - Simon, Franz-Georg A1 - Stephan, Ina T1 - Using Environmental Simulations to Test the Release of Hazardous Substances from Polymer-Based Products: Are Realism and Pragmatism Mutually Exclusive Objectives? N2 - The potential release of hazardous substances from polymer-based products is currently in the focus of environmental policy. Environmental simulations are applied to expose such products to selected aging conditions and to investigate release processes. Commonly applied aging exposure types such as solar and UV radiation in combination with water contact, corrosive gases, and soil contact as well as expected general effects on polymers and additional ingredients of polymer-based products are described. The release of substances is based on mass-transfer processes to the material surfaces. Experimental approaches to investigate transport processes that are caused by water contact are presented. For tailoring the tests, relevant aging exposure types and release quantification methods must be combined appropriately. Several studies on the release of hazardous substances such as metals, polyaromatic hydrocarbons, flame retardants, antioxidants, and carbon nanotubes from polymers are summarized exemplarily. Differences between natural and artificial exposure tests are discussed and demonstrated for the release of flame retardants from several polymers and for biocides from paints. Requirements and limitations to apply results from short-term artificial environmental exposure tests to predict long-term environmental behavior of polymers are presented. KW - Environmental simulations KW - Polymer-based products KW - Artificial weathering KW - Degradation KW - Leaching KW - Soil contact PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509310 SN - 1996-1944 VL - 13 IS - 12 SP - Paper 2709, 22 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heisterkamp, I. A1 - Gartiser, S. A1 - Schoknecht, Ute A1 - Happel, O. A1 - Kalbe, Ute A1 - Kretzschmar, M. A1 - Ilvonen, O. T1 - Investigating the ecotoxicity of construction product eluates as multicomponent mixtures N2 - The release of hazardous compounds from construction products can harm human health and the environment. To improve the sustainability of construction materials, the leaching of substances from construction products and their potential environmental impact should be assessed. Twenty-seven construction products from different product groups were examined with a combination of standardized leaching tests (dynamic surface leaching test and percolation test) and biotests (algae, daphnia, fish egg, luminescent bacteria, umu and Ames fluctuation tests). To identify the released substances, extensive qualitative and quantitative chemical analyses were performed, including gas chromatographic and liquid chromatographic screening techniques. Results: Many of the tested eluates caused signifcant ecotoxic efects. Particularly high ecotoxicities were observed for grouts (lowest ineffective dilution (LID) up to 16384) and cork granules (LID up to 24578). The results of ecotoxicity tests allow the prioritization of the eluates that should be subjected to detailed chemical analyses. Organic screening by different methods and ranking the identifed substances based on recorded hazard classification is a suitable approach to identify the relevant toxic substances. Conclusions: Determining the ecotoxicity of eluates from construction products records the summary effect of all leachable substances. This instrument is especially useful for construction products of complex and largely unknown composition. The ecotoxicological and the chemical–analytical approach complement each other in an ideal way to characterize the potential hazard of eluates from construction products and to identify the environmentally hazardous components in these eluates. Our results confirm that the proposed harmonized methods for testing eluate toxicity are an adequate and applicable procedure to move toward a more sustainable way of building and to reduce toxic effects of construction products in their use phase in the environment. KW - Construction products KW - Building materials KW - Ecotoxicity KW - Biotests KW - Leaching KW - Eluates KW - Chemical analysis KW - Analytical screening techniques KW - Mixture toxicity PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568864 VL - 35 IS - 1 SP - 1 EP - 20 PB - Springer AN - OPUS4-56886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalbe, Ute A1 - Berger, Wolfgang A1 - Eckardt, Jürgen A1 - Fischer, Hildegard A1 - Jansky, Hans-Joachim T1 - Reference Materials for Leachate Prognosis T2 - 9th International Symposium on Biological and Environmental Reference Materials (BERM-9) CY - Berlin, Germany DA - 2003-06-15 PY - 2003 SN - 1618-2642 SN - 1618-2650 VL - 378 IS - 5 SP - 1(?) PB - Springer CY - Berlin AN - OPUS4-2565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalbe, Ute A1 - Müller, Werner A1 - Berger, Wolfgang A1 - Eckardt, Jürgen T1 - Transport of organic contaminants within composite liner systems N2 - Composite liners (a geomembrane in intimate contact with a mineral liner) are frequently used to line landfills and contaminated sites. It is therefore very important to characterise the behaviour of these systems even under extreme conditions. An investigation was undertaken to determine the influence of a mixture of concentrated organic contaminants on composite liner materials taken from test cells that had been dismantled after a 12-year permeation test. The organic hydrocarbons had permeated the HDPE-geomembrane and had then migrated or had been adsorbed within the mineral liners, depending on their properties. The obtained concentration profiles of the contaminant mixture components indicate that the various mineral layer materials have selective retardation abilities which correspond to the different parameters of the organic compounds as well as of the mineral layer. In addition, contaminant transport in the composite liners tested was modelled and the results of the model analysis compared with measurement data. An example (acetone) illustrates the calculated spatial and temporal contaminant concentration. The composite liners investigated exhibit a very good sealing capacity against the concentrated organic contaminants used. KW - Composite liner system KW - Transport modelling KW - Contaminants PY - 2002 U6 - https://doi.org/10.1016/S0169-1317(01)00093-X SN - 0169-1317 SN - 1872-9053 VL - 21 IS - 1-2 SP - 67 EP - 76 PB - Elsevier CY - Amsterdam AN - OPUS4-1353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kalbe, Ute A1 - Berger, Wolfgang A1 - Helm, Renate T1 - Zur Beprobung kontaminierter mineralischer Dichtungen aus Versuchsmeßzellen und Herstellung von Dünnschliffen KW - Mineralische Deponieabdichtung KW - Gefüge KW - Dünnschliffe KW - Organische Schadstoffe PY - 2000 SN - 0032-6542 VL - 46 IS - 1 SP - 33 EP - 43 PB - Verb. Deutscher Präparatoren e.V. CY - Nierstein AN - OPUS4-1346 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Berger, Wolfgang A1 - Kalbe, Ute A1 - Goebbels, Jürgen T1 - Fabric studies on contaminated mineral layers in composite liners N2 - The fabric of mineral liner materials that had been exposed to organic compounds over a 12-year period was investigated as part of a wider research project. Macromorphological and micromorphological changes in the fabric were identified using computed tomography and polarisation microscopy. Special care was taken to ensure artefact free sampling and sample preparation, in particular, the drying method used, has a substantial influence on the quality of the thin sections. Fabric changes due to contaminant permeation over several years are, by and large, relatively small and their intensity is material specific. Silty clay CML1, in particular, contains a somewhat greater number of fissures and voids in comparison with the original material. The superposition of various processes in both test procedures and sample preparation may lead to fabric changes which can impede interpretation of the results. KW - Composite liner system KW - Mineral layer KW - Microfabric KW - Macrofabric KW - Computed tomography KW - Microscopy PY - 2002 U6 - https://doi.org/10.1016/S0169-1317(01)00095-3 SN - 0169-1317 SN - 1872-9053 VL - 21 IS - 1-2 SP - 89 EP - 98 PB - Elsevier CY - Amsterdam AN - OPUS4-1351 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Oliver A1 - Kalbe, Ute A1 - Berger, Wolfgang A1 - Nordhauß, Katja A1 - Christoph, Gabriele A1 - Walzel, Hans-Peter T1 - Comparison of batch and column tests for the elution of artificial turf system components N2 - Synthetic athletic tracks and turf areas for outdoor sporting grounds may release contaminants due to the chemical composition of some components. A primary example is that of zinc from reused scrap tires (main constituent, styrene butadiene rubber, SBR), which might be harmful to the environment. Thus, methods for the risk assessment of those materials are required. Laboratory leaching methods like batch and column tests are widely used to examine the soil–groundwater pathway. We tested several components for artificial sporting grounds with batch tests at a liquid to solid (LS) ratio of 2 L/kg and column tests with an LS up to 26.5 L/kg. We found a higher zinc release in the batch test eluates for all granules, ranging from 15% higher to 687% higher versus data from column tests for SBR granules. Accompanying parameters, especially the very high turbidity of one ethylene propylene diene monomer rubber (EPDM) or thermoplastic elastomer (TPE) eluates, reflect the stronger mechanical stress of batch testing. This indicates that batch test procedures might not be suitable for the risk assessment of synthetic sporting ground components. Column tests, on the other hand, represent field conditions more closely and allow for determination of time-dependent contaminants release. PY - 2012 U6 - https://doi.org/10.1021/es301227y SN - 0013-936X SN - 1520-5851 VL - 46 IS - 24 SP - 13085 EP - 13092 PB - ACS Publ. CY - Washington, DC AN - OPUS4-27555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -