TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Wirth, Thomas A1 - Terborg, R. A1 - Kim, K.J. A1 - Unger, Wolfgang T1 - Measurement of atomic fractions in Cu(In,Ga)Se2 films by Auger Electron Spectroscopy (AES) and Energy Dispersive Electron Probe Microanalysis (ED-EPMA) JF - Microscopy and microanalysis N2 - A pilot study (PS) has been performed under the Consultative Committee for Amount of Substance (CCQM) / Surface Analysis Working Group (SAWG) with the objective to compare the atomic fractions of Cu, In, Ga and Se in CIGS alloy films. Four polycrystalline CIGS films with different atomic fractions were fabricated by variation of the relative atomic fraction of Ga on 100 mm x 100 mm soda-lime glass (SLG) substrates. Similar to real solar cells the atomic fractions of the four elements (Cu, In, Ga, Se) are not homogeneous with depth. For the analysis of the CIGS layers of about 2 μm thickness depth profiling with surface analysis techniques such as XPS, AES and SIMS was recommended. A CIGS alloy reference sample with atomic fractions certified by isotope dilution ICP-MS at KRISS has been also put at disposal by the coordinator of the comparison. The certified values were close to the atomic fractions of the samples to be analyzed. Hence, the atomic fractions of Cu, In, Ga and Se in the CIGS films could be determined by the relative sensitivity factors (RSF) derived from the reference CIGS film. The total ion intensities of the constituent elements were obtained by the total number counting (TNC) method. KW - Interlaboratory comparison KW - Auger Electron Spectroscopy (AES) KW - EDX KW - EPMA KW - CIGS KW - CCQM PY - 2014 DO - https://doi.org/10.1017/S1431927614003730 SN - 1431-9276 SN - 1435-8115 VL - 20 IS - Suppl. S 3 SP - 402 EP - 403 PB - Cambridge University Press CY - New York, NY AN - OPUS4-31339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinrich, Thomas A1 - Traulsen, Christoph Hans-Henning A1 - Holzweber, Markus A1 - Richter, S. A1 - Kunz, V. A1 - Kastner, S.K. A1 - Krabbenborg, S.O. A1 - Huskens, J. A1 - Unger, Wolfgang A1 - Schalley, C.A. T1 - Coupled molecular switching processes in ordered mono- and multilayers of stimulus-responsive rotaxanes on gold surfaces JF - Journal of the American Chemical Society : JACS N2 - Interfaces provide the structural basis for function as, for example, encountered in nature in the membrane-embedded photosystem or in technology in solar cells. Synthetic functional multilayers of molecules cooperating in a coupled manner can be fabricated on surfaces through layer-by-layer self-assembly. Ordered arrays of stimulus-responsive rotaxanes undergoing well-controlled axle shuttling are excellent candidates for coupled mechanical motion. Such stimulus-responsive surfaces may help integrate synthetic molecular machines in larger systems exhibiting even macroscopic effects or generating mechanical work from chemical energy through cooperative action. The present work demonstrates the successful deposition of ordered mono- and multilayers of chemically switchable rotaxanes on gold surfaces. Rotaxane mono- and multilayers are shown to reversibly switch in a coupled manner between two ordered states as revealed by linear dichroism effects in angle-resolved NEXAFS spectra. Such a concerted switching process is observed only when the surfaces are well packed, while less densely packed surfaces lacking lateral order do not exhibit such effects. KW - Molecular machine KW - Rotaxane KW - LBL growth KW - XPS KW - NEXAFS KW - SIMS PY - 2015 DO - https://doi.org/10.1021/ja512654d SN - 0002-7863 SN - 1520-5126 VL - 137 IS - 13 SP - 4382 EP - 4390 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-33077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Kim, C.S. A1 - Ruh, S. W. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Mata-Salazar, J. A1 - Juarez-Garcia, J.M. A1 - Cortazar-Martinez, O. A1 - Herrera-Gomez, A. A1 - Hansen, P.E. A1 - Madesen, J.S. A1 - Senna, C.A. A1 - Archanjo, B.S. A1 - Damasceno, J.C. A1 - Achete, C.A. A1 - Wang, H. A1 - Wang, M. A1 - Windover, D. A1 - Steel, E. A1 - Kurokawa, A. A1 - Fujimoto, T. A1 - Azuma, Y. A1 - Terauchi, S. A1 - Zhang, L. A1 - Jordaan, W.A. A1 - Spencer, S.J. A1 - Shard, A.G. A1 - Koenders, L. A1 - Krumrey, M. A1 - Busch, I. A1 - Jeynes, C. T1 - Thickness measurement of nm HfO2 films JF - Metrologia N2 - A pilot study for the thickness measurement of HfO2 films was performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this pilot study was to ensure the equivalency in the measurement capability of national metrology institutes for the thickness measurement of HfO2 films. In this pilot study, the thicknesses of six HfO2 films with nominal thickness from 1 nm to 4 nm were measured by X-ray Photoelectron Spectroscopy (XPS), X-ray Reflectometry(XRR), X-ray Fluorescence Analysis (XRF), Transmission Electron Spectroscopy (TEM), Spectroscopic Ellipsometry (SE) and Rutherford Backscattering Spectrometry (RBS). The reference thicknesses were determined by mutual calibration of a zero-offset method (Medium Energy Ion Scattering Spectroscopy (MEIS) of KRISS) and a method traceable to the length unit (the average thicknesses of three XRR data except the thinnest film). These reference thicknesses are traceable to the length unit because they are based on the traceability of XRR. For the thickness measurement by XPS, the effective attenuation length of Hf 4f electrons was determined. In the cases of XRR and TEM, the offset values were determined from a linear fitting between the reference thicknesses and the individual data by XRR and TEM. The amount of substance of HfO2, expressed as thickness of HfO2 films (in both linear and areal density units), was found to be a good subject for a CCQM key comparison. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM. KW - Thickness measurements KW - nm films KW - X-ray Photoelectron Spectroscopy KW - Mutual calibration PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08016 SN - 0026-1394 VL - 58 IS - 1a SP - 08016 PB - IOP Publishing Lt. CY - Bristol AN - OPUS4-54175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -