TY - JOUR A1 - Kittner, Maria A1 - Eisentraut, Paul A1 - Dittmann, Daniel A1 - Braun, Ulrike T1 - Decomposability versus detectability: First validation of TED‐GC/MS for microplastic detection in different environmental matrices N2 - A fast method for microplastic detection is thermal extraction desorption‐gas chromatography/mass spectrometry (TED‐GC/MS), which uses polymer‐specific thermal decomposition products as marker compounds to determine polymer mass contents in environmental samples. So far, matrix impacts of different environmental matrices on TED‐GC/MS performance had not yet been assessed systematically. Therefore, three solid freshwater matrices representing different aquatic bodies with varying organic matter contents were spiked with a total of eight polymers. Additionally, for the first time, the two biodegradable polymers polybutylene adipate terephthalate (PBAT) and polylactide (PLA) were analysed using TED‐GC/MS. The methodological focus of this work was on detectability, quality of signal formation as well as realisation of quantification procedures and determination of the limit of detection (LOD) values. Overall, TED‐GC/MS allowed the unambiguous detection of the environmentally most relevant polymers analysed, even at low mass contents: 0.02 wt% for polystyrene (PS), 0.04 wt% for the tyre component styrene butadiene rubber (SBR) and 0.2 wt% for polypropylene (PP), polyethylene (PE) and PBAT. Further, all obtained LOD values were increased in all matrices compared to the neat polymer without matrix. The LOD of the standard polymers were increased similarly (PS: 0.21–0.34 μg, SBR: 0.27–0.38 μg, PP: 0.32–0.36 μg, PMMA: 0.64–1.30 μg, PET: 0.90–1.37 μg, PE: 3.80–6.99 μg) and their decompositions by radical scission processes were not significantly influenced by the matrices. In contrast, matrixspecific LOD increases of both biodegradable polymers PBAT (LOD: 1.41–7.18 μg) and PLA (0.84–20.46 μg) were observed, probably due to their hetero‐functional character and interactions with the matrices. In conclusion, the TED‐GC/MS performance is not solely determined by the type of the polymers but also by the composition of the matrix. KW - TED-GC/MS KW - Microplastic KW - Freshwater matrices KW - Gas chromatography KW - Mass spectrometry PY - 2023 U6 - https://doi.org/10.1002/appl.202200089 SN - 2702-4288 VL - 2 IS - 3 SP - 1 EP - 12 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Bednarz, Marius A1 - Braun, Ulrike A1 - Bannick, Claus Gerhard A1 - Ricking, Mathias A1 - Altmann, Korinna T1 - A promising approach to monitor microplastic masses in composts N2 - Inputs of plastic impurities into the environment via the application of fertilizers are regulated in Germany and the EU by means of ordinances. Robust and fast analytical methods are the basis of legal regulations. Currently, only macro- and large microplastic contents (>1 mm) are measured. Microplastics (1–1,000 µm), are not yet monitored. Thermal analytical methods are suitable for this purpose, which can determine the mass content and can also be operated fully automatically in routine mode. Thermal extraction desorption-gas chromatography/mass spectrometry (TED-GC/MS) allows the identification of polymers and the determination of mass contents in solid samples from natural environments. In accordance with the German or European Commission (EC) Fertiliser Ordinance, composting plants should be monitored for microplastic particles with this method in the future. In this context a compost plant was sampled. At the end of the rotting process, the compost was sieved and separated in a coarse (>1 mm) and a fine fraction (<1 mm). The fine fraction was processed using density separation comparing NaCl and NaI as possible salt alternative and screened for microplastic masses by TED-GC/MS with additional validation and quality assurance experiments. With TED-GC/MS total microplastics mass contents of 1.1–3.0 μg/mg in finished compost could be detected with polyethylene mainly. What differs much to the total mass of plastics in the coarse fraction with up to 60 μg/mg, which were visually searched, identified via ATR-FTIR and gravimetrically weighted. KW - Microplastics KW - TED-GC/MS KW - Compost KW - Monitoring KW - Soil PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-586688 VL - 4 SP - 1 EP - 12 AN - OPUS4-58668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wander, Lukas A1 - Lommel, Lukas A1 - Meyer, Klas A1 - Braun, Ulrike A1 - Paul, Andrea T1 - Development of a low-cost method for quantifying microplastics in soils and compost using near-infrared spectroscopy N2 - Near-infrared (NIR) spectroscopy is a promising candidate for low-cost, nondestructive, and high-throughput mass quantification of micro¬plastics in environmental samples. Widespread application of the technique is currently hampered mainly by the low sensitivity of NIR spectroscopy compared to thermo-analytical approaches commonly used for this type of analysis. This study shows how the application of NIR spectroscopy for mass quantification of microplastics can be extended to smaller analyte levels by combining it with a simple and rapid microplastic enrichment protocol. For this purpose, the widely used flotation of microplastics in a NaCl solution, accelerated by centrifugation, was chosen which allowed to remove up to 99 % of the matrix at recovery rates of 83–104 %. The spectroscopic measurements took place directly on the stainless-steel filters used to collect the extracted particles to reduce sample handling to a minimum. Partial least squares regression (PLSR) models were used to identify and quantify the extracted microplastics in the mass range of 1–10 mg. The simple and fast extraction procedure was systematically optimized to meet the requirements for the quantification of microplastics from common PE-, PP-, and PS-based packaging materials with a particle size < 1 mm found in compost or soils with high natural organic matter content (> 10 % determined by loss on ignition). Microplastics could be detected in model samples at a mass fraction of 1 mg g-1. The detectable microplastic mass fraction is about an order of magnitude lower compared to previous studies using NIR spectroscopy without additional enrichment. To emphasize the cost-effectiveness of the method, it was implemented using some of the cheapest and most compact NIR spectrometers available. KW - NIR KW - Soil KW - compost KW - PLSR PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-546405 SN - 0957-0233 VL - 33 IS - 7 SP - 075801 EP - 075814 PB - IOP Publishing Ltd. CY - UK AN - OPUS4-54640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wander, Lukas A1 - Lommel, Lukas A1 - Braun, Ulrike A1 - Meyer, Klas A1 - Paul, Andrea T1 - Development of a Low-Cost Method for Quantifying Microplastics in Soils and Compost Using Near-Infrared Spectroscopy N2 - Near-infrared (NIR) spectroscopy is a promising candidate for low-cost, nondestructive, and highthroughput mass quantification of microplastics in environmental samples. Widespread application of the technique is currently hampered mainly by the low sensitivity of NIR spectroscopy compared to thermoanalytical approaches commonly used for this type of analysis. This study shows how the application of NIR spectroscopy for mass quantification of microplastics can be extended to smaller analyte levels by combining it with a simple and rapid microplastic enrichment protocol. For this purpose, the widely used flotation of microplastics in a NaCl solution, accelerated by centrifugation, was chosen which allowed to remove up to 99 % of the matrix at recovery rates of 83–104 %. The spectroscopic measurements took place directly on the stainless-steel filters used to collect the extracted particles to reduce sample handling to a minimum. Partial least squares regression (PLSR) models were used to identify and quantify the extracted microplastics in the mass range of 1–10 mg. The simple and fast extraction procedure was systematically optimized to meet the requirements for the quantification of microplastics from common PE-, PP-, and PS-based packaging materials with a particle size < 1 mm found in compost or soils with high natural organic matter content (> 10 % determined by loss on ignition). Microplastics could be detected in model samples at a mass fraction of 1 mg g-1. The detectable microplastic mass fraction is about an order of magnitude lower compared to previous studies using NIR spectroscopy without additional enrichment. To emphasize the cost-effectiveness of the method, it was implemented using some of the cheapest and most compact NIR spectrometers available. KW - Mikroplastik KW - NIR KW - Sensor KW - Kompost KW - Multivariat PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552605 VL - 33 IS - 7 SP - 1 EP - 13 PB - IOP Publishing Ltd. CY - Bristol AN - OPUS4-55260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klöckner, P. A1 - Seiwert, B. A1 - Eisentraut, Paul A1 - Braun, Ulrike A1 - Reemtsma, T. A1 - Wagner, S. T1 - Characterization of tire and road wear particles from road runoffindicates highly dynamic particle properties N2 - Tire and road wear particles (TRWPs) are heteroagglomerates of tire rubber and other particles deposited on the road surface and one of the main contributors to non-exhaust emissions of automobile traffic. In this study, samples from road environments were analyzed for their TRWP contents and concentra- tions of eight organic tire constituents. TRWP concentrations were determined by quantifying Zn in the density fraction < 1.9 g/cm ³and by thermal extraction desorption-gas chromatography-mass spectrometry (TED-GC/MS) and the concentrations ranged from 3.7 to 480 mg TRWP/g. Strong and statistically signif- icant correlations with TRWPs were found for 2-hydroxybenzothiazole and 2-aminobenzothiazole, indi- cating that these substances may be suitable markers of TRWPs. The mass distribution of TRWPs in road dust suggests that the main mass fraction formed on roads consists of coarse particles ( > 100 μm). Data for a sedimentation basin indicate that the fine fraction ( < 50 μm) is preferentially transported by road runoffinto receiving waters. The size distribution and density data of TRWP gathered by three different quantitation approaches also suggest that aging of TRWPs leads to changes in their particle density. An improved understanding of the dynamics of TRWP properties is essential to assess the distribution and dissipation of this contaminant of emerging concern in the environment. KW - Tire Wear KW - Density separation KW - Microplastic KW - Urban PY - 2020 U6 - https://doi.org/10.1016/j.watres.2020.116262 VL - 185 SP - 116262 PB - Elsevier Ltd. AN - OPUS4-51256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Goedecke, Caroline A1 - Wiesner, Yosri A1 - Jekel, M A1 - Ruhl, A S A1 - Braun, Ulrike T1 - Specific adsorption sites and conditions derived by thermal decomposition of activated carbons and adsorbed carbamazepine N2 - The adsorption of organic micropollutants onto activated carbon is a favourable solution for the treatment of drinking water and wastewater. However, these adsorption processes are not sufficiently understood to allow for the appropriate prediction of removal processes. In this study, thermogravimetric analysis, alongside evolved gas analysis, is proposed for the characterisation of micropollutants adsorbed on activated carbon. Varying amounts of carbamazepine were adsorbed onto three different activated carbons, which were subsequently dried, and their thermal decomposition mechanisms examined. The discovery of 55 different pyrolysis products allowed differentiations to be made between specific adsorption sites and conditions. However, the same adsorption mechanisms were found for all samples, which were enhanced by inorganic constituents and oxygen containing surface groups. Furthermore, increasing the loadings led to the evolution of more hydrated decomposition products, whilst parts of the carbamazepine molecules were also integrated into the carbon structure. It was also found that the chemical composition, especially the degree of dehydration of the activated carbon, plays an important role in the adsorption of carbamazepine. Hence, it is thought that the adsorption sites may have a higher adsorption energy for specific adsorbates, when the activated carbon can then potentially increase its degree of graphitisation. KW - Aktivkohle KW - TED-GC/MS KW - Adsorption KW - Thermoanalytik PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506946 VL - 10 IS - 1 SP - 6695 PB - Nature Publishing Group AN - OPUS4-50694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Axel A1 - Goedecke, Caroline A1 - Eisentraut, Paul A1 - Piechotta, Christian A1 - Braun, Ulrike T1 - Microplastic analysis using chemical extraction followed by LC‑UV analysis: a straightforward approach to determine PET content in environmental samples N2 - Background: The ubiquitous occurrence of microplastic particles in marine and aquatic ecosystems was intensively investigated in the past decade. However, we know less about the presence, fate, and input paths of microplastic in terrestrial ecosystems. A possible entry path for microplastic into terrestrial ecosystems is the agricultural application of sewage sludge and solid bio-waste as fertilizers. Microplastic contained in sewage sludge also includes Polyethylene terephthalate (PET), which could originate as fiber from textile products or as a fragment from packaging products (foils, bottles, etc.). Information about microplastic content in such environmental samples is limited yet, as most of the used analytical methods are very time-consuming, regarding sample preparation and detection, require sophisticated analytical tools and eventually need high user knowledge. Results: Here, we present a simple, specific tool for the analysis of PET microplastic particles based on alkaline extraction of PET from the environmental matrix and subsequent determination of the monomers, terephthalic acid, using liquid chromatography with UV detection (LC-UV). The applicability of the method is shown for different types of PET in several soil-related, terrestrial environmental samples, e.g., soil, sediment, compost, fermentation residues, but also sewage sludge, suspended particles from urban water management systems, and indoor dust. Recoveries for model samples are between 94.5 and 107.1%. Limit of determination and limit of quantification are absolute masses of 0.031 and 0.121 mg PET, respectively. In order to verify the measured mass contents of the environmental samples, a method comparison with thermal extraction-desorption-gas chromatography–mass spectrometry (TED-GC/MS) was conducted. Both methods deliver similar results and corroborated each other. PET mass contents in environmental samples range from values below LOQ in agriculture soil up to 57,000 mg kg−1 in dust samples. Conclusions: We demonstrate the potential of an integral method based on chemical extraction for the Determination of PET mass contents in solid environmental samples. The method was successfully applied to various matrices and may serve as an analytical tool for further investigations of PET-based microplastic in terrestrial ecosystems. KW - Soil KW - Analysis KW - Microplastic KW - PET KW - LC-UV PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509060 IS - 32 SP - 85 PB - Springer Open CY - Berlin AN - OPUS4-50906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wander, Lukas A1 - Vianello, A. A1 - Vollertsen, J. A1 - Westad, F. A1 - Braun, Ulrike A1 - Paul, Andrea T1 - Exploratory analysis of hyperspectral FTIR data obtained from environmental microplastics samples N2 - Hyperspectral imaging of environmental samples with infrared microscopes is one of the preferred methods to find and characterize microplastics. Particles can be quantified in terms of number, size and size distribution. Their shape can be studied and the substances can be identified. Interpretation of the collected spectra is a typical problem encountered during the analysis. The image datasets are large and contain spectra of countless particles of natural and synthetic origin. To supplement existing Analysis pipelines, exploratory multivariate data analysis was tested on two independent datasets. Dimensionality reduction with principal component analysis (PCA) and uniform manifold approximation and projection (UMAP) was used as a core concept. It allowed for improved visual accessibility of the data and created a chemical two-dimensional image of the sample. Spectra belonging to particles could be separated from blank spectra, reducing the amount of data significantly. Selected spectra were further studied, also applying PCA and UMAP. Groups of similar spectra were identified by cluster analysis using k-means, density based, and interactive manual clustering. Most clusters could be assigned to chemical species based on reference spectra. While the results support findings obtained with a ‘targeted analysis’ based on automated library search, exploratory analysis points the attention towards the group of unidientified spectra that remained and are otherwise easily overlooked. KW - Microplastics KW - FTIR KW - Exploratory analysis PY - 2020 U6 - https://doi.org/10.1039/c9ay02483b VL - 12 IS - 6 SP - 781 EP - 791 PB - Royal Society of Chemistry AN - OPUS4-50396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dittmann, Daniel A1 - Lucke, T. A1 - Ruhl, A. S. A1 - Winzenbacher, R. A1 - Jekel, M. A1 - Braun, Ulrike T1 - Untersuchungen zu biologischen, organischen und anorganischen Veränderungen granulierter Aktivkohlen während der Trinkwasseraufbereitung N2 - Untersuchungen zu biologischen, organischen und anorganischen Veränderungen granulierter Aktivkohlen während der Trinkwasseraufbereitung des Landeswasserversorgers Langenau. KW - Thermogravimetrie KW - Trinkwasser KW - Wasseraufbereitung KW - Aktivkohle PY - 2020 SN - 0083-6915 VL - 118 IS - 2 SP - 47 EP - 50 PB - Wiley-VCH Verlag GmbH & Co. KGaA AN - OPUS4-51434 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Goedecke, Caroline A1 - Dittmann, Daniel A1 - Eisentraut, Paul A1 - Wiesner, Yosri A1 - Schartel, Bernhard A1 - Klack, Patrick A1 - Braun, Ulrike T1 - Evaluation of thermoanalytical methods equipped with evolved gas analysis for the detection of microplastic in environmental samples N2 - Microplastic particles are currently detected in almost all environmental compartments. The results of detection vary widely, as a multitude of very different methods are used with very different requirements for analytical validity. In this work four thermoanalytical methods are compared and their advantages and limitations are discussed. One of them is thermal extraction-desorption gas chromatography mass spectrometry (TED-GC/MS), an analysis method for microplastic detection that has become established in recent years. In addition, thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS) were applied, two methods that are less common in this field but are still used in other research areas. Finally, microscale combustion calorimeter (MCC) was applied, a method not yet used for microplastic detection. The presented results are taken from a recently published interlaboratory comparison test by Becker et al. (2020). Here a reference material consisting of suspended matter and specified added polymer masses was examined, and only the results of the recoveries were presented. In the present paper, however, the results for the individual polymers are discussed in detail and individual perspectives for all instruments are shown. It was found that TED-GC/MS is the most suitable method for samples with unknown matrix and unknown, variable kinds and contents of microplastic. TGA-FTIR is a robust method for samples with known matrix and with defined kinds of microplastic. TGA-MS may offer a solution for the detection of PVC particles in the future. MCC can be used as a very fast and simple screening method for the identification of a potential microplastic load of standard polymers in unknown samples. KW - Microplastic KW - TED-GC/MS KW - TGA-MS KW - TGA-FTIR KW - MCC KW - Thermal analysis PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-516687 VL - 152 SP - 104961 PB - Elsevier B.V. AN - OPUS4-51668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -