TY - JOUR A1 - Wawrzyn, Eliza A1 - Schartel, Bernhard A1 - Ciesielski, M. A1 - Kretzschmar, B. A1 - Braun, Ulrike A1 - Döring, M. T1 - Are novel aryl phosphates competitors for bisphenol A bis(diphenyl phosphate) in halogen-free flame-retarded polycarbonate/acrylonitrile-butadiene-styrene blends? N2 - The reactivity of the flame retardant and its decomposition temperature control the condensed-phase action in bisphenol A polycarbonate/acrylonitrile–butadiene–styrene/polytetrafluoroethylene (PC/ABSPTFE) blends. Thus, to increase charring in the condensed phase of PC/ABSPTFE + aryl phosphate, two halogen-free flame retardants were synthesized: 3,3,5-trimethylcyclohexylbisphenol bis(diphenyl phosphate) (TMC-BDP) and bisphenol A bis(diethyl phosphate) (BEP). Their performance is compared to bisphenol A bis(diphenyl phosphate) (BDP) in PC/ABSPTFE blend. The comprehensive study was carried out using thermogravimetry (TG); TG coupled with Fourier transform infrared spectrometer (TG-FTIR); the Underwriters Laboratory burning chamber (UL 94); limiting oxygen index (LOI); cone calorimeter at different irradiations; tensile, bending and heat distortion temperature tests; as well as rheological studies and differential scanning calorimeter (DSC). With respect to pyrolysis, TMC-BDP works as well as BDP in the PC/ABSPTFE blend by enhancing the cross-linking of PC, whereas BEP shows worse performance because it prefers cross-linking with itself rather than with PC. As to its fire behavior, PC/ABSPTFE + TMC-BDP presents results very similar to PC/ABSPTFE + BDP; the blend PC/ABSPTFE + BEP shows lower flame inhibition and higher total heat evolved (THE). The UL 94 for the materials with TMC-BDP and BDP improved from HB to V0 for specimens of 3.2 mm thickness compared to PC/ABSPTFE and PC/ABSPTFE + BEP; the LOI increased from around 24% up to around 28%, respectively. BEP works as the strongest plasticizer in PC/ABSPTFE, whereas the blends with TMC-BDP and BDP present the same rheological properties. PC/ABSPTFE + TMC-BDP exhibits the best mechanical properties among all flame-retarded blends. KW - Polycarbonate (PC) KW - Aryl phosphate KW - Flame retardancy KW - Pyrolysis KW - PC/ABS PY - 2012 U6 - https://doi.org/10.1016/j.eurpolymj.2012.06.015 SN - 0014-3057 SN - 1873-1945 VL - 48 IS - 9 SP - 1561 EP - 1574 PB - Elsevier CY - Oxford AN - OPUS4-26292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. T1 - Pyrolysis and fire behaviour of epoxy systems containing a novel 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener N2 - Highly soluble 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide-(DOPO)-based diamino hardener (2), bearing its amino groups directly on the DOPO framework, is investigated with respect to its use as a reactive flame retardant in thermosets. A mechanism for decomposition of the corresponding phosphorus-modified epoxy resin system based on a diglycidylether of bisphenol A DGEBA and 2 (DGEBA/2) is proposed and compared to the systems using DGEBA and 4,4'-diaminodiphenylsulfon (DGEBA/DDS) and to a similar system based on the structurally comparable non-reactive DOPO-based compound (DGEBA/DDS/1). Additive 1 changed the decomposition characteristics of the epoxy resin only slightly and phosphorus was released. Incorporating 2 induces two-step decomposition and most of the phosphorus remains in the residue. Furthermore, the fire behaviour of neat epoxy resin systems and a representative carbon fibre-reinforced composite based on DGEBA, DDS and 2 (DGEBA/DDS/2) were examined and compared to that of the analogous composite systems based on DGEBA/DDS and DGEBA/DDS/1. Based on different flame retardancy mechanisms both the reactive compound 2 and the additive compound 1 improve flammability (increase in LOI >13% and achieving V-1 behaviour) of the epoxy resin and composites. Under forced flaming only the flame inhibition of the additive compound 1 acts sufficiently. Lastly, the superior key mechanical properties of the epoxy resin and composite based on 2 are sketched. KW - Decomposition KW - DOPO KW - Flame retardancy KW - Composites KW - Thermosets PY - 2008 U6 - https://doi.org/10.1016/j.eurpolymj.2008.01.017 SN - 0014-3057 SN - 1873-1945 VL - 44 IS - 3 SP - 704 EP - 715 PB - Elsevier CY - Oxford AN - OPUS4-16708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Schartel, Bernhard T1 - Effective halogen-free flame retardants for carbon fibre-reinforced epoxy composites N2 - DOPO-based flame retardants with tailored chemical structures are proposed for carbon fibre reinforced epoxy composites. Critical properties related to the fracture toughness are maintained, effectively allowing the use of such compounds in composites for demanding applications. KW - Fire retardancy KW - DOPO KW - Epoxy resin KW - LOI KW - UL94 PY - 2006 U6 - https://doi.org/10.1007/s10853-006-0134-4 SN - 0022-2461 SN - 1573-4803 VL - 41 IS - 15 SP - 4981 EP - 4984 PB - Springer Science + Business Media B.V. CY - New York, USA AN - OPUS4-12641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Schartel, Bernhard A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez-Graterol, R. A1 - Sandler, J.K.W. A1 - Altstädt, V. T1 - Novel Phosphorus-Containing Poly(ether sulfone)s and Their Blends with an Epoxy Resin: Thermal Decomposition and Fire Retardancy N2 - Summary: The decomposition of novel phosphorus-containing poly(oxyphenylene-sulfonyl-phenylene-oxy-diphenyl phenylene phosphine oxide) (PSU_I), 2,5-dihydroxy-1-biphenylene-phosphine oxide based polysulfone (PSU_II), poly(sulfonyl-diphenylphenylene phosphonate) (PSU_P) and bisphenol A-based polysulfone (PSU) is studied. The influence of the chemical structure, charring and phosphorus release is discussed based on the mass loss, kinetics and products. The pyrolysis and fire behaviour of blends with epoxy resin (EP) are studied. For EP-PSU_II, phosphorus initiates water elimination and changes the decomposition pathway of EP. The fire behaviour of EP-PSU shows some improvements, whereas the heat release rate is crucially reduced for EP-PSU_II due to simultaneous char formation and flame inhibition. KW - Epoxy KW - Flame retardance KW - High performance polymers KW - Polysulfones KW - Thermogravimetric analysis (TGA) PY - 2006 U6 - https://doi.org/10.1002/macp.200600182 SN - 1022-1352 SN - 1521-3935 VL - 207 IS - 16 SP - 1501 EP - 1514 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-12650 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Balabanovich, Aliaksandr A1 - Knoll, Uta A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Novel Phosphorus-containing Hardeners with Tailored Chemical Structures for Epoxy Resins: Synthesis and Cured Resin Properties N2 - A comparative evaluation of systematically tailored chemical structures of various phosphorus-containing aminic hardeners for epoxy resins was carried out. In particular, the effect of the oxidation state of the phosphorus in the hardener molecule on the curing behavior, the mechanical, thermomechanical, and hot-wet properties of a cured bifunctional bisphenol-A based thermoset is discussed. Particular attention is paid to the comparative pyrolysis of neat cured epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (with a phosphorus content of about 2.6 wt %) and of the fire behavior of their corresponding carbon fiber-reinforced composites. Comparatively faster curing thermosetting system with an enhanced flame retardancy and adequate processing behavior can be formulated by taking advantage of the higher reactivity of the phosphorus-modified hardeners. For example, a combination of the high reactivity and of induced secondary crosslinking reactions leads to a comparatively high Tg when curing the epoxy using a substoichiometric amount of the phosphinate-based hardener. The overall mechanical performance of the materials cured with the phosphorus-containing hardeners is comparable to that of a 4,4-DDS-cured reference system. While the various phosphorus-containing hardeners in general provide the epoxy-based matrix with enhanced flame retardancy properties, it is the flame inhibition in the gas phase especially that determines the improvement in fire retardancy of carbon fiber-reinforced composites. In summary, the present study provides an important contribution towards developing a better understanding of the potential use of such phosphorus-containing compounds to provide the composite matrix with sufficient flame retardancy while simultaneously maintaining its overall mechanical performance on a suitable level. KW - Flame retardance KW - Organo-phosphorus compounds KW - Fracture toughness PY - 2007 SN - 0021-8995 SN - 1097-4628 VL - 105 IS - 5 SP - 2744 EP - 2759 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-15071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Schartel, Bernhard ED - Schartel, Bernhard T1 - Flame retardant epoxy resin system for liquid composite moulding applications KW - Epoxy resin KW - Fire retardancy PY - 2007 SN - 978-3-8334-8873-3 SP - 69 EP - 84 PB - Books on Demand GmbH CY - Norderstedt AN - OPUS4-17627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard A1 - Knoll, Uta A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez, R. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. T1 - Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites N2 - A systematic and comparative evaluation of the pyrolysis of halogen-free flame-retarded epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (phosphorus contents around 2.6 wt.%) and the fire behaviour of their carbon fibre composites is presented. Decomposition pathways are proposed based on the thermal analysis (TG), TG coupled with evolved gas analysis (TG-FTIR), kinetics and analysis of the residue with FTIR and XPS. All organophosphorus-modified hardeners containing phenoxy groups lead to a reduced decomposition temperature and mass loss step for the main decomposition of the cured epoxy resin. With increasing oxidation state of the phosphorus the thermally stable residue increases, whereas the release of phosphorus-containing volatiles decreases. The flammability of the composites was investigated with LOI and UL 94 and the fire behaviour for forced-flaming conditions with cone calorimeter tests performed using different irradiations. The flame retardancy mechanisms are discussed. With increasing oxidation state of the phosphorus additional charring is observed, whereas the flame inhibition, which plays the more important role for the performance of the composites, decreases. The processing and the mechanical performance (delamination resistance, flexural properties and interlaminar bonding strength) of the fibre-reinforced composites containing phosphorus were maintained at a high level and, in some cases, even improved. The potential for optimising flame retardancy while maintaining mechanical properties is highlighted in this study. KW - Fire retardant KW - Composites KW - Organophosphorus-containing epoxy resin PY - 2006 U6 - https://doi.org/10.1016/j.polymer.2006.10.022 SN - 0032-3861 SN - 1873-2291 VL - 47 IS - 26 SP - 8495 EP - 8508 PB - Springer CY - Berlin AN - OPUS4-14054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard T1 - Novel phosphorus-modified polysulfone as a combined flame retardant and toughness modifier for epoxy resins N2 - A novel phosphorus-modified polysulfone (P-PSu) was employed as a combined toughness modifier and a source of flame retardancy for a DGEBA/DDS thermosetting system. In comparison to the results of a commercially available polysulfone (PSu), commonly used as a toughness modifier, the chemorheological changes during curing measured by means of temperature-modulated DSC revealed an earlier occurrence of mobility restrictions in the P-PSu-modified epoxy. A higher viscosity and secondary epoxy-modifier reactions induced a sooner vitrification of the reacting mixture; effects that effectively prevented any phase separation and morphology development in the resulting material during cure. Thus, only about a 20% increase in fracture toughness was observed in the epoxy modified with 20 wt.% of P-PSu, cured under standard conditions at 180 °C for 2 h. Blends of the phosphorus-modified and the standard polysulfone (PSu) were also prepared in various mixing ratios and were used to modify the same thermosetting system. Again, no evidence for phase separation of the P-PSu was found in the epoxy modified with the P-PSu/PSu blends cured under the selected experimental conditions. The particular microstructures formed upon curing these novel materials are attributed to a separation of PSu from a miscible P-PSu–epoxy mixture. Nevertheless, the blends of P-PSu/PSu were found to be effective toughness/flame retardancy enhancers owing to the simultaneous microstructure development and polymer interpenetration. KW - Flame retardants KW - Phosphorus-modified polysulfone KW - Fracture toughness PY - 2007 SN - 0032-3861 SN - 1873-2291 VL - 48 IS - 3 SP - 778 EP - 790 PB - Springer CY - Berlin AN - OPUS4-14515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Balabanovich, Aliaksandr A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez, R. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. T1 - Pyrolysis of Epoxy Resins and Fire Behavior of Epoxy Resin Composites Flame-Retarded with 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide Additives N2 - The pyrolysis of an epoxy resin and the fire behavior of corresponding carbon fiber-reinforced composites, both flame-retarded with either 10-ethyl-9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide or 1,3,5-tris[2-(9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide-10-)ethyl]1, 3,5-triazine-2,4,6(1H,3H,5H)-trione, are investigated. The different fire retardancy mechanisms are discussed, and their influence on the fire properties assessed, in particular for flammability (limiting oxygen index, UL 94) and developing fires (cone calorimeter with different external heat fluxes of 35, 50, and 70 kW m-2). Adding the flame retardants containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide affects the fire behavior by both condensed phase and gas phase mechanisms. Interactions between the additives and the epoxy resin result in a change in the decomposition pathways and an increased char formation. The release of phosphorous products results in significant flame inhibition. The fire properties achieved are thus interesting with respect to industrial exploration. KW - Flame retardance KW - Thermosets KW - Composites KW - Thermogravimetric analysis (TGA) KW - Pyrolysis KW - High performance polymers KW - Epoxy resin PY - 2007 SN - 0021-8995 SN - 1097-4628 VL - 104 IS - 4 SP - 2260 EP - 2269 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-14573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -