TY - JOUR A1 - Paul, Andrea A1 - Wander, Lukas A1 - Becker, Roland A1 - Goedecke, Caroline A1 - Braun, Ulrike T1 - High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil N2 - The increasing pollution of terrestrial and aquatic ecosystems with plastic debris leads to the accumulation of microscopic plastic particles of still unknown amount. To monitor the degree of contamination analytical methods are urgently needed, which help to quantify microplastics (MP). Currently, time-costly purified materials enriched on filters are investigated both by micro-infrared spectroscopy and/or micro-Raman. Although yielding precise results, these techniques are time consuming, and are restricted to the analysis of a small part of the sample in the order of few micrograms. To overcome these problems, here we tested a macroscopic dimensioned NIR process-spectroscopic method in combination with chemometrics. For calibration, artificial MP/soil mixtures containing defined ratios of polyethylene, polyethylene terephthalate, polypropylene, and polystyrene with diameters < 125 µm were prepared and measured by a process FT-NIR spectrometer equipped with a fiber optic reflection probe. The resulting spectra were processed by chemometric models including support vector machine regression (SVR), and partial least squares discriminant analysis (PLS-DA). Validation of models by MP mixtures, MP-free soils and real-world samples, e.g. and fermenter residue, suggest a reliable detection and a possible classification of MP at levels above 0.5 to 1.0 mass% depending on the polymer. The benefit of the combined NIRS chemometric approach lies in the rapid assessment whether soil contains MP, without any chemical pre-treatment. The method can be used with larger sample volumes and even allows for an online prediction and thus meets the demand of a high-throughput method. KW - Microplastics KW - Soil KW - Chemometrics KW - PLS-DA KW - Support vector machines KW - Near Infrared Spectroscopy PY - 2018 U6 - https://doi.org/10.1007/s11356-018-2180-2 SN - 1614-7499 SN - 0944-1344 VL - 26 IS - 8 SP - 7364 EP - 7374 PB - Springer AN - OPUS4-45405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -