TY - CONF A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Thermische Zersetzungsmechanismen von Polymeren: Vom Verständnis des Pyrolyseverhaltens zu Flammschutzmechanismen T2 - GEFTA Jahrestagung 2009 CY - Giessen, Germany DA - 2009-10-07 PY - 2009 AN - OPUS4-20422 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard T1 - Flame retardancy mechanisms of phosphorus containing epoxy resins: effects of oxidation state T2 - MODEST CY - San Sebastián, Spain DA - 2006-09-10 PY - 2006 AN - OPUS4-12939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Decomposition pathways in the pyrolysis zone: A key to understand fire retardancy mechanisms T2 - FRPM07 CY - Bolton, England DA - 2007-07-04 PY - 2007 AN - OPUS4-15051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Braun, Ulrike T1 - Comprehensive fire behaviour assessment of polymeric materials based on cone calorimeter investigations N2 - Bench scale performance based cone calorimeter investigations were conducted on glass fibre reinforced polyamide 66 (PA-66) and high impact polystyrene (HIPS) materials. Red phosphorus and magnesium hydroxide were used as fire retardants. Dilution, heat sink, barrier and charring mechanisms are considered to be active in the condensed phase. Dilution, cooling and flame poisoning mechanisms are discussed for the gas phase. Cone calorimeter data are used to give a comprehensive fire behaviour assessment in terms of the propensity to cause a quick growing fire and of the propensity to cause a fire of long duration. The external heat flux is varied between 30 and 75 kW/m2 so that the results for combustion behaviour and flame retardancy, respectively, are valid for different fire scenarios and fire tests. Results on the intrinsic contribution of the steady heat release rate per unit area reveal information about the flammability behaviour. UL 94 results are predicted in close correspondence to UL 94 experiments. PY - 2003 DO - https://doi.org/10.1515/epoly.2003.3.1.177 SN - 1618-7229 IS - 013 SP - 1 EP - 14 PB - De Gruyter CY - [S.l.] AN - OPUS4-15852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Fichera, Mario Augusto A1 - Jäger, Christian T1 - Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6,6 N2 - The fire retardancy mechanisms of aluminium diethylphosphinate in combination with melamine polyphosphate and zinc borate was analysed in glass-fibre reinforced polyamide 6,6. The influence of phosphorus compounds on the polyamide decomposition pathways was characterized using thermal analysis (TG), evolved gas analysis (TG–FTIR), and FTIR–ATR analysis of the residue. The Lewis acid–base interactions between the flame retardants, the amide unit, and the metal ions control the decomposition. The flammability (LOI, UL 94) and performance under forced-flaming conditions (cone calorimeter using different irradiations) were investigated. Fire residues were analysed with FTIR–ATR, SEM–EDX, and NMR. Aluminium phosphinate in polyamide 6,6 acts mainly by flame inhibition. Melamine polyphosphate shows some fuel dilution and a significant barrier effect. Using a combination of aluminium phosphinate and melamine polyphosphate results in some charring and a dominant barrier effect. These effects are improved in the presence of zinc borate due to the formation of boron–aluminium phosphates instead of aluminium phosphates. KW - Flame retardancy KW - Polyamide 6,6 KW - Metal phosphinate KW - Melamine polyphosphate KW - Zinc borate PY - 2007 SN - 0141-3910 SN - 1873-2321 VL - 92 IS - 8 SP - 1528 EP - 1545 PB - Applied Science Publ. CY - London AN - OPUS4-15707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Pawlowski, Kristin T1 - Phosphorus-Containing Polymeric Materials: The Impact of Pyrolysis on Flame Retardancy T2 - 11th International Conference "INTERFLAM 2007" CY - London, UK DA - 2007-09-03 KW - Flame Retardancy KW - Fire Retardancy KW - Flame Retardants KW - Decompositiion pathways KW - Pyrolysis KW - Phosphorus PY - 2007 SN - 978-0-9541216-8-6 SN - 978-0-9541216-9-3 SP - 71 EP - 78 PB - Interscience Communications Limited CY - London, UK AN - OPUS4-15761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Pikacz, E. A1 - Seefeldt, Henrik A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Karrasch, Andrea A1 - Jäger, Christian T1 - Flame retardancy in PC/Silicone rubber blends using BDP and additional additives T2 - 20th Annual conference on recent advances in flame retardancy of polymeric materials CY - Stamford, CT, USA DA - 2009-06-01 KW - Flame retardancy KW - PC blend KW - Aryl phosphate PY - 2009 SN - 1-59623-509-8 VL - 20 IS - Chapter IV-B SP - 236 EP - 246 CY - Wellesley, MA, USA AN - OPUS4-20703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gallo, Emanuela A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Russo, P. A1 - Acierno, Domenico T1 - Synergistic flame retardant halogen-free combination of aluminium phosphinate and metal oxides in PBT T2 - Interflam 2010 - 12th International conference CY - Nottingham, UK DA - 2010-07-05 KW - Poly(butylene terephthalate) KW - Metal oxide KW - Phosphinate KW - Flammability PY - 2010 SN - 978-0-9541216-5-5 VL - 1 SP - 629 EP - 640 PB - Interscience Communications CY - London, UK AN - OPUS4-21669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Wachtendorf, Volker A1 - Geburtig, Anja A1 - Bahr, Horst A1 - Schartel, Bernhard T1 - Weathering resistance of halogen-free flame retardance in thermoplastics N2 - The influence of weathering on the fire retardancy of polymers is investigated by means of a cone calorimeter test, before and after artificial weathering. The surface degradation was monitored using different techniques (ATR–FTIR, microscopy, colour measurement). Different kinds of polymeric materials were chosen, all as they are used in practice: polycarbonate (PC) blends, polyamide (PA) and polypropylene (PP) flame-retarded with arylphosphate, melamine cyanurate (MC) and intumescent formulation based on ammonium polyphosphate (APP), respectively. All samples show material degradation at the surface due to weathering. No significant weathering influence occurs on the flame retardancy when it is a bulk property, as was observed for aryl phosphates in PC blends and MC in PA. When the fire retardancy is dominated by a surface mechanism, dependence on the duration of weathering is detected: for intumescent formulations based on ammonium APP in PP, a worsening in the formation of the intumescent network was observed. KW - Fire retardancy KW - Weathering resistance KW - Degradation KW - Intumescence KW - Cone calorimeter PY - 2010 DO - https://doi.org/10.1016/j.polymdegradstab.2010.08.020 SN - 0141-3910 SN - 1873-2321 VL - 95 IS - 12 SP - 2421 EP - 2429 PB - Applied Science Publ. CY - London AN - OPUS4-22612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Weiß, André A1 - Mohr, F. A1 - Kleemeier, M. A1 - Hartwig, A. A1 - Braun, Ulrike T1 - Flame retarded epoxy resins by adding layered silicate in combination with the conventional protection-layer-building flame retardants melamine borate and ammonium polyphosphate N2 - The pyrolysis and flammability of phosphonium-modified layered silicate epoxy resin nanocomposites (EP/LS) were evaluated when LS was combined with two flame retardants, melamine borate (MB) and ammonium polyphosphate (APP), that also act via a surface protection layer. Thermogravimetry (TG), TG coupled with Fourier Transform Spectroscopy (TG-FTIR), oxygen index (LOI), UL 94 burning chamber (UL 94) and cone calorimeter were used. The glassy coating because of 10 wt % MB during combustion showed effects in the cone calorimeter test similar to nanodispersed LS, and somewhat better flame retardancy in flammability tests, such as LOI and UL 94. Adding APP to EP resulted in intumescent systems. The fire retardancy was particularly convincing when 15 wt % APP was used, especially for low external heat flux, and thus, also in flammability tests like LOI and UL 94. V0 classification is achieved when 15 wt % APP is used in EP. The flame retardancy efficiency of the protection layers formed does not increase linearly with the MB and APP concentrations used. The combination of LS with MB or APP shows antagonism; thus the performance of the combination of LS with MB or APP, respectively, was disappointing. No optimization of the carbonaceous-inorganic surface layer occurred for LS-MB. Combining LS with APP inhibited the intumescence, most probably through an increase in viscosity clearly above the value needed for intumescent behavior. KW - Nanocomposites KW - Fire retardance KW - Thermosets KW - Organoclay KW - Ammonium polyphosphate KW - Melamine borate PY - 2010 DO - https://doi.org/10.1002/app.32512 SN - 0021-8995 SN - 1097-4628 VL - 118 IS - 2 SP - 1134 EP - 1143 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-21725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Bahr, Horst A1 - Braun, Ulrike A1 - Recknagel, Christoph T1 - Short communication: Fire risks of burning asphalt N2 - Eyewitnesses describe burning pavement surfaces in extreme fire scenarios. However, it was believed that the pavement plays a negligible role in comparison to other items feeding such an extreme fire at the same time. The asphalt mixtures used differ widely, thus raising the question as to whether this conclusion holds for all kinds of such materials. Three different kinds of asphalt mixtures were investigated with the aim of benchmarking the fire risks. Cone calorimeter tests are performed at an irradiance of 70kWm-2. All three investigated asphalts burn in extreme fire scenarios. The fire response (fire load, time to ignition, maximum heat release rate and smoke production) is quite different and varies by factors of up to 10 when compared to each other. The fire load per mass is always very low due to the high content of inert minerals, whereas the effective heat of combustion of the volatiles is quite typical of non-flame retarded organics. The heat release rate and fire growth indices are strongly dependent on the fire residue and thus the kind of mineral filler used. Comparing with polymeric materials, the investigated Mastic Asphalt and Stone Mastic Asphalt may be called intrinsically flame resistant, whereas the investigated Special Asphalt showed a pronouncedly greater fire risk with respect to causing fire growth and smoke. Thus the question is raised as to whether the use of certain kinds of asphalts in tunnels must be reconsidered. Apart from the binder used, the study also indicates varying the kind of aggregate as a possible route to eliminate the problem. KW - Asphalt KW - Cone calorimeter KW - Fire behaviour PY - 2010 DO - https://doi.org/10.1002/fam.1027 SN - 0308-0501 SN - 1099-1018 VL - 34 IS - 7 SP - 333 EP - 340 PB - Heyden CY - London AN - OPUS4-22172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gallo, Emanuela A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Russo, P. A1 - Acierno, Domenico T1 - Fire retardant synergisms between nanometric Fe2O3 and aluminium phosphinate in poly(butylene terephthalate) N2 - The pyrolysis and the flame retardancy of poly(butylene terephthalate) (PBT) containing aluminum diethylphosphinate (AlPi) and nanometric Fe2O3 were investigated using thermal analysis, evolved gas analysis (Thermogravimetry-FTIR), flammability tests (LOI, UL 94), cone calorimeter measurements and chemical analysis of residue (FTIR). AlPi mainly acts as a flame inhibitor in the gas phase, through the release of diethylphosphinic acid. A small amount of Fe2O3 in PBT promotes the formation of a carbonaceous char in the condensed phase. The combination of 5 and 8 wt% AlPi, respectively, with 2 wt% metal oxides achieves V-0 classification in the UL 94 test thanks to complementary action mechanisms. Using PBT/metal oxide nanocomposites shows a significant increase in the flame retardancy efficiency of AlPi in PBT and thus opens the route to surprisingly sufficient additive contents as low as 7 wt%. KW - Poly(butylene terephthalate) (PBT) KW - Flammability KW - Metal oxide KW - Nanocomposite KW - Aluminum diethylphosphinate PY - 2011 DO - https://doi.org/10.1002/pat.1774 SN - 1042-7147 SN - 1099-1581 VL - 22 IS - 12 SP - 2382 EP - 2391 PB - John Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-24915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wawrzyn, Eliza A1 - Schartel, Bernhard A1 - Ciesielski, M. A1 - Kretzschmar, B. A1 - Braun, Ulrike A1 - Döring, M. T1 - Are novel aryl phosphates competitors for bisphenol A bis(diphenyl phosphate) in halogen-free flame-retarded polycarbonate/acrylonitrile-butadiene-styrene blends? N2 - The reactivity of the flame retardant and its decomposition temperature control the condensed-phase action in bisphenol A polycarbonate/acrylonitrile–butadiene–styrene/polytetrafluoroethylene (PC/ABSPTFE) blends. Thus, to increase charring in the condensed phase of PC/ABSPTFE + aryl phosphate, two halogen-free flame retardants were synthesized: 3,3,5-trimethylcyclohexylbisphenol bis(diphenyl phosphate) (TMC-BDP) and bisphenol A bis(diethyl phosphate) (BEP). Their performance is compared to bisphenol A bis(diphenyl phosphate) (BDP) in PC/ABSPTFE blend. The comprehensive study was carried out using thermogravimetry (TG); TG coupled with Fourier transform infrared spectrometer (TG-FTIR); the Underwriters Laboratory burning chamber (UL 94); limiting oxygen index (LOI); cone calorimeter at different irradiations; tensile, bending and heat distortion temperature tests; as well as rheological studies and differential scanning calorimeter (DSC). With respect to pyrolysis, TMC-BDP works as well as BDP in the PC/ABSPTFE blend by enhancing the cross-linking of PC, whereas BEP shows worse performance because it prefers cross-linking with itself rather than with PC. As to its fire behavior, PC/ABSPTFE + TMC-BDP presents results very similar to PC/ABSPTFE + BDP; the blend PC/ABSPTFE + BEP shows lower flame inhibition and higher total heat evolved (THE). The UL 94 for the materials with TMC-BDP and BDP improved from HB to V0 for specimens of 3.2 mm thickness compared to PC/ABSPTFE and PC/ABSPTFE + BEP; the LOI increased from around 24% up to around 28%, respectively. BEP works as the strongest plasticizer in PC/ABSPTFE, whereas the blends with TMC-BDP and BDP present the same rheological properties. PC/ABSPTFE + TMC-BDP exhibits the best mechanical properties among all flame-retarded blends. KW - Polycarbonate (PC) KW - Aryl phosphate KW - Flame retardancy KW - Pyrolysis KW - PC/ABS PY - 2012 DO - https://doi.org/10.1016/j.eurpolymj.2012.06.015 SN - 0014-3057 SN - 1873-1945 VL - 48 IS - 9 SP - 1561 EP - 1574 PB - Elsevier CY - Oxford AN - OPUS4-26292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Naumann, Annette A1 - Seefeldt, Henrik A1 - Stephan, Ina A1 - Braun, Ulrike A1 - Noll, Matthias T1 - Material resistance of flame retarded wood-plastic composites against fire and fungal decay N2 - Flame retarded wood-plastic composites (WPCs) should allow safe application in areas of fire risk. Halogen-free flame retardants can contain high amounts of nitrogen, phosphorus or sulphur, which may serve as nutrition source for wood degrading fungi and accelerate wood decay. Therefore, the material resistance of WPCs with each of four flame retardants against both fire or fungal decay was examined in comparison to WPC without flame retardant. Expandable graphite showed the best performance against fire in cone calorimetry and radiant panel testing. Two ammonium polyphosphates and a third nitrogen-containing flame retardant were not as effective. Contrary to the possibility that flame retardants might enhance fungal decay of WPC, the opposite effect occurred in case of the wood-degrading fungi Trametes versicolor and Coniophora puteana according to determination of mass loss and decrease of bending modulus of elasticity. Only the surface mould Alternaria alternata slightly increased the degradation of WPCs with nitrogen-containing flame retardants compared to WPC without flame retardant according to mass loss data and FTIR-ATR analyses. Finally, WPC including expandable graphite as flame retardant was effective against both fire and fungal decay. KW - Wood-plastic composite (WPC) KW - Flame retardants KW - Fire behaviour KW - Fungal decay KW - Fourier transform infrared - attenuated total reflexion (FTIR-ATR) spectroscopy KW - Microscopy PY - 2012 DO - https://doi.org/10.1016/j.polymdegradstab.2012.03.031 SN - 0141-3910 SN - 1873-2321 VL - 97 IS - 7 SP - 1189 EP - 1196 PB - Applied Science Publ. CY - London AN - OPUS4-26058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Dümichen, Erik A1 - Becker, Roland A1 - Barthel, Anne-Kathrin A1 - Bannick, Claus Gerhard T1 - General aspects of polymers and and polymers in environment N2 - The presentation addresses first general aspects of polymers and polymers in environment (definitions, types, phases, morphology, density) and than summarise the possibilities of analysis. T2 - 1. meeting of ISO/TC 61/SC 5/AHG "microplastics" CY - Berlin, Germany DA - 12.04.2016 KW - Microplastics KW - Polymers PY - 2016 AN - OPUS4-36758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Balabanovich, Aliaksandr A1 - Knoll, Uta A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Novel Phosphorus-containing Hardeners with Tailored Chemical Structures for Epoxy Resins: Synthesis and Cured Resin Properties N2 - A comparative evaluation of systematically tailored chemical structures of various phosphorus-containing aminic hardeners for epoxy resins was carried out. In particular, the effect of the oxidation state of the phosphorus in the hardener molecule on the curing behavior, the mechanical, thermomechanical, and hot-wet properties of a cured bifunctional bisphenol-A based thermoset is discussed. Particular attention is paid to the comparative pyrolysis of neat cured epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (with a phosphorus content of about 2.6 wt %) and of the fire behavior of their corresponding carbon fiber-reinforced composites. Comparatively faster curing thermosetting system with an enhanced flame retardancy and adequate processing behavior can be formulated by taking advantage of the higher reactivity of the phosphorus-modified hardeners. For example, a combination of the high reactivity and of induced secondary crosslinking reactions leads to a comparatively high Tg when curing the epoxy using a substoichiometric amount of the phosphinate-based hardener. The overall mechanical performance of the materials cured with the phosphorus-containing hardeners is comparable to that of a 4,4-DDS-cured reference system. While the various phosphorus-containing hardeners in general provide the epoxy-based matrix with enhanced flame retardancy properties, it is the flame inhibition in the gas phase especially that determines the improvement in fire retardancy of carbon fiber-reinforced composites. In summary, the present study provides an important contribution towards developing a better understanding of the potential use of such phosphorus-containing compounds to provide the composite matrix with sufficient flame retardancy while simultaneously maintaining its overall mechanical performance on a suitable level. KW - Flame retardance KW - Organo-phosphorus compounds KW - Fracture toughness PY - 2007 SN - 0021-8995 SN - 1097-4628 VL - 105 IS - 5 SP - 2744 EP - 2759 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-15071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard A1 - Knoll, Uta A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez, R. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. T1 - Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites N2 - A systematic and comparative evaluation of the pyrolysis of halogen-free flame-retarded epoxy resins containing phosphine oxide, phosphinate, phosphonate, and phosphate (phosphorus contents around 2.6 wt.%) and the fire behaviour of their carbon fibre composites is presented. Decomposition pathways are proposed based on the thermal analysis (TG), TG coupled with evolved gas analysis (TG-FTIR), kinetics and analysis of the residue with FTIR and XPS. All organophosphorus-modified hardeners containing phenoxy groups lead to a reduced decomposition temperature and mass loss step for the main decomposition of the cured epoxy resin. With increasing oxidation state of the phosphorus the thermally stable residue increases, whereas the release of phosphorus-containing volatiles decreases. The flammability of the composites was investigated with LOI and UL 94 and the fire behaviour for forced-flaming conditions with cone calorimeter tests performed using different irradiations. The flame retardancy mechanisms are discussed. With increasing oxidation state of the phosphorus additional charring is observed, whereas the flame inhibition, which plays the more important role for the performance of the composites, decreases. The processing and the mechanical performance (delamination resistance, flexural properties and interlaminar bonding strength) of the fibre-reinforced composites containing phosphorus were maintained at a high level and, in some cases, even improved. The potential for optimising flame retardancy while maintaining mechanical properties is highlighted in this study. KW - Fire retardant KW - Composites KW - Organophosphorus-containing epoxy resin PY - 2006 DO - https://doi.org/10.1016/j.polymer.2006.10.022 SN - 0032-3861 SN - 1873-2291 VL - 47 IS - 26 SP - 8495 EP - 8508 PB - Springer CY - Berlin AN - OPUS4-14054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Balabanovich, Aliaksandr A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Artner, J. A1 - Ciesielski, M. A1 - Döring, M. A1 - Perez, R. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. T1 - Pyrolysis of Epoxy Resins and Fire Behavior of Epoxy Resin Composites Flame-Retarded with 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-oxide Additives N2 - The pyrolysis of an epoxy resin and the fire behavior of corresponding carbon fiber-reinforced composites, both flame-retarded with either 10-ethyl-9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide or 1,3,5-tris[2-(9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide-10-)ethyl]1, 3,5-triazine-2,4,6(1H,3H,5H)-trione, are investigated. The different fire retardancy mechanisms are discussed, and their influence on the fire properties assessed, in particular for flammability (limiting oxygen index, UL 94) and developing fires (cone calorimeter with different external heat fluxes of 35, 50, and 70 kW m-2). Adding the flame retardants containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide affects the fire behavior by both condensed phase and gas phase mechanisms. Interactions between the additives and the epoxy resin result in a change in the decomposition pathways and an increased char formation. The release of phosphorous products results in significant flame inhibition. The fire properties achieved are thus interesting with respect to industrial exploration. KW - Flame retardance KW - Thermosets KW - Composites KW - Thermogravimetric analysis (TGA) KW - Pyrolysis KW - High performance polymers KW - Epoxy resin PY - 2007 SN - 0021-8995 SN - 1097-4628 VL - 104 IS - 4 SP - 2260 EP - 2269 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-14573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Flame Retardancy Mechanisms of Aluminium Phosphinate in Combination with Melamine Cyanurate in Glass-Fibre-Reinforced Poly(1,4-butylene terephthalate) N2 - The flame retardancy mechanisms of aluminium diethylphosphinate (AlPi) and its combination with melamine cyanurate (MC) in glass-fibre-reinforced poly(butylene terephthalate) (PBT/GF) were analysed using TGA including evolved gas analysis (TGA-FTIR), cone calorimeter measurements using various irradiations, flammability tests (limited oxygen index, LOI, UL 94) and chemical analyses of residues (FTIR, SEM/EDX). AlPi decomposed mainly through the formation of diethylphosphinic acid and aluminium phosphate and influenced the decomposition of the PBT only slightly. AlPi acted mainly through flame inhibition. A halogen-free V-0 PBT/GF material was achieved with a LOI of 44%. Additional charring influenced the flammability. MC decomposed independently of the polymer and showed some fuel dilution effects. KW - Flame retardance KW - Metal phosphinate KW - Polyester KW - Pyrolysis KW - Thermogravimetric analysis PY - 2008 DO - https://doi.org/10.1002/mame.200700330 SN - 1438-7492 SN - 1439-2054 VL - 293 IS - 3 SP - 206 EP - 217 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-17122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Schartel, Bernhard T1 - Effective halogen-free flame retardants for carbon fibre-reinforced epoxy composites N2 - DOPO-based flame retardants with tailored chemical structures are proposed for carbon fibre reinforced epoxy composites. Critical properties related to the fracture toughness are maintained, effectively allowing the use of such compounds in composites for demanding applications. KW - Fire retardancy KW - DOPO KW - Epoxy resin KW - LOI KW - UL94 PY - 2006 DO - https://doi.org/10.1007/s10853-006-0134-4 SN - 0022-2461 SN - 1573-4803 VL - 41 IS - 15 SP - 4981 EP - 4984 PB - Springer Science + Business Media B.V. CY - New York, USA AN - OPUS4-12641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -