TY - JOUR A1 - Sturm, Heinz A1 - Schartel, Bernhard A1 - Weiß, André A1 - Braun, Ulrike T1 - SEM/EDX: Advanced investigation of structured fire residues and residue formation N2 - Heterogeneous, gradual or structured morphology of fire residues plays an important role in fire retardancy of polymers. A scanning electron microscope with an attached energy dispersive X-ray spectrometer (SEM/EDX) is highlighted as a powerful tool for the advanced characterization of such complex fire residues, since it offers high resolution in combination with both good depth of field and analysis of chemical composition. Two examples are presented: First, comprehensive SEM/EDX investigation on a complex structured fire residue of glass fibre reinforced polyamide 6,6 (PA 66-GF) flame retarded by diethylaluminium phosphinate, melamine polyphosphate and some zinc borate. A multilayered surface crust (thickness ~ 24 µm) covers a rather hollow area stabilized by GF glued together. The resulting efficient thermal insulation results in self-extinguishing before pyrolysis is completed, even under forced-flaming combustion. Second, sophisticated, quasi online SEM/EDX imaging of the formation of residual protection layer in layered silicate epoxy resin nanocomposites (LSEC). Burning specimens were quenched in liquid nitrogen for subsequent analyses. Different zones were distinguished in the condensed phase characterized by distinct processes such as melting and ablation of organic material, as well as agglomeration, depletion, exfoliation and reorientation of the LS. KW - Fire residue KW - SEM/EDX KW - Fire retardancy KW - PA 66 KW - Layered silicate KW - Diethylaluminium phosphinate PY - 2012 U6 - https://doi.org/10.1016/j.polymertesting.2012.03.005 SN - 0142-9418 VL - 31 IS - 5 SP - 606 EP - 619 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-25802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard A1 - Bartholmai, Matthias A1 - Braun, Ulrike ED - Le Bras, M. T1 - Barrier effects for the fire retardancy of polymers T2 - 9th European Meeting on Fire Retardancy and Protection of Materials CY - Lille, France DA - 2003-09-15 KW - Fire retardancy KW - Nanocomposites KW - Red Phosphorus KW - Mg(OH)2 KW - Cone Calorimeter KW - LOI PY - 2005 SN - 0-85404-582-1 VL - 9 SP - 264 EP - 275 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-7377 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Schartel, Bernhard T1 - Effective halogen-free flame retardants for carbon fibre-reinforced epoxy composites N2 - DOPO-based flame retardants with tailored chemical structures are proposed for carbon fibre reinforced epoxy composites. Critical properties related to the fracture toughness are maintained, effectively allowing the use of such compounds in composites for demanding applications. KW - Fire retardancy KW - DOPO KW - Epoxy resin KW - LOI KW - UL94 PY - 2006 U6 - https://doi.org/10.1007/s10853-006-0134-4 SN - 0022-2461 SN - 1573-4803 VL - 41 IS - 15 SP - 4981 EP - 4984 PB - Springer Science + Business Media B.V. CY - New York, USA AN - OPUS4-12641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Wachtendorf, Volker A1 - Geburtig, Anja A1 - Bahr, Horst A1 - Schartel, Bernhard T1 - Weathering resistance of halogen-free flame retardance in thermoplastics N2 - The influence of weathering on the fire retardancy of polymers is investigated by means of a cone calorimeter test, before and after artificial weathering. The surface degradation was monitored using different techniques (ATR–FTIR, microscopy, colour measurement). Different kinds of polymeric materials were chosen, all as they are used in practice: polycarbonate (PC) blends, polyamide (PA) and polypropylene (PP) flame-retarded with arylphosphate, melamine cyanurate (MC) and intumescent formulation based on ammonium polyphosphate (APP), respectively. All samples show material degradation at the surface due to weathering. No significant weathering influence occurs on the flame retardancy when it is a bulk property, as was observed for aryl phosphates in PC blends and MC in PA. When the fire retardancy is dominated by a surface mechanism, dependence on the duration of weathering is detected: for intumescent formulations based on ammonium APP in PP, a worsening in the formation of the intumescent network was observed. KW - Fire retardancy KW - Weathering resistance KW - Degradation KW - Intumescence KW - Cone calorimeter PY - 2010 U6 - https://doi.org/10.1016/j.polymdegradstab.2010.08.020 SN - 0141-3910 SN - 1873-2321 VL - 95 IS - 12 SP - 2421 EP - 2429 PB - Applied Science Publ. CY - London AN - OPUS4-22612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Effect of Red Phosphorus and Melamine Polyphosphate on the Fire Behavior of HIPS N2 - Pyrolysis and fire behavior of high impact polystyrene (HIPS) containing red phosphorus and melamine polyphosphate were investigated. The thermal and thermo-oxidative decomposition were characterized using thermogravimetry coupled with FTIR and MS, respectively. The fire behavior was monitored with a cone calorimeter using different external heat fluxes and determining the LOI. Red phosphorus reduced the heat release in HIPS due to radical trapping in the gas phase. The reduction in effective heat of combustion was accompanied by an increase of incomplete combustion products such as smoke and carbon monoxide. Melamine polyphosphate in HIPS acted in the condensed phase with barrier formation. The heat release rate was reduced, whereas the total heat evolved, smoke and carbon monoxide formation were not influenced significantly. Using both fire retardants, the resulting fire retardancy was characterized mainly by superposition. KW - HIPS KW - Red Phosphorus KW - TG-FTIR KW - TG-MS KW - Cone Calorimeter KW - LOI KW - Fire retardancy KW - Melamine Polyphosphate PY - 2005 U6 - https://doi.org/10.1177/0734904105043451 SN - 0734-9041 SN - 1530-8049 VL - 23 IS - 1 SP - 5 EP - 30 PB - Sage CY - London AN - OPUS4-5287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Flame Retardant Mechanisms of Red Phosphorus and Magnesium Hydroxide in High Impact Polystyrene N2 - The flame retardant mechanisms of red phosphorus, magnesium hydroxide and red phosphorus combined with magnesium hydroxide were studied in high impact polystyrene by means of comprehensive decomposition studies and combustion tests. The study is intended to illuminate prerequisites and the potential of red phosphorus as a fire retardant for hydrocarbon polymers in the condensed phase and in the gas phase. Thermal and thermo-oxidative decomposition, decomposition kinetics and the product gases evolved were characterized using thermogravimetry coupled with Fourier transform infrared spectroscopy and mass spectroscopy, respectively. Fire behaviour was investigated with a cone calorimeter using different external heat fluxes, whereas the flammability was determined by limited oxygen indices. The combustion residues were analysed using XPS. Red phosphorus reduced the heat release in HIPS due to radical trapping in the gas phase. Magnesium hydroxide influenced fire behaviour by heat sink mechanisms, release of water and the formation of a magnesia layer acting as a barrier. The combination of both flame retardants in HIPS nearly resulted in a superposition. A slight synergy in barrier characteristics was due to the formation of magnesium phosphate, whereas a slight anti-synergism occurred in flammability and in the gas phase action. The latter effect is controlled by a decreased fuel rate due to the barrier layer rather than by an initiation of red phosphorus oxidation in the condensed phase. KW - Fire retardancy KW - Polystyrene KW - Pyrolysis KW - TG-FTIR KW - Red Phosphorus KW - Mg(OH)2 KW - Cone Calorimeter KW - Additives KW - Thermogravimetric analysis PY - 2004 U6 - https://doi.org/10.1002/macp.200400255 SN - 1022-1352 SN - 1521-3935 VL - 205 IS - 16 SP - 2185 EP - 2196 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-4488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -