TY - JOUR A1 - Goedecke, Caroline A1 - Mülow-Stollin, Ulrike A1 - Hering, S. A1 - Richter, Janine A1 - Piechotta, Christian A1 - Paul, Andrea A1 - Braun, Ulrike T1 - A first pilot study on the sorption of environmental pollutants on various microplastic materials N2 - With the drastic increase in plastic production, the input of plastic particles into the environment has become a recognised problem. Xenobiotics are able to sorb to polymer materials, and this process is further enhanced where they Encounter microplastics (plastic fragments <5 mm). In this work we studied the sorption of metformin, a type-2 diabetes drug, and difenoconazole, a fungicide, onto the virgin polymer materials polyamide (PA), polypropylene (PP), and polystyrene (PS). Additionally, PP was cryo-milled and PA was treated with acid to investigate the influence of an increase in surface area and chemical modification. The material properties were also studied by dynamic scanning calorimetry (DSC), gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR). Sorption experiments were performed on the basis of a full factorial design examining the effect of agitation, pH value, and salinity. Experimental results showed that difenoconazole sorbs readily to all microplastics, whereas the more polar analyte metformin did not show any affinity to the materials used. For difenoconazole the governing factor in all cases is agitation, while both pH and salinity exhibited only a slight influence. The modification of polymers leads to enhanced sorption, indicating that an increase in surface area (cryo-milled PP) or inner volume (acid-treated PA) strongly favours adsorption. Moreover, long-term experiments demonstrated that the time until equilibrium is reached depends strongly on the particle size. KW - Difenoconazole KW - Metformin KW - Plastic debris KW - Polymer KW - Dynamic scanning calorimetry PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-402393 SN - 2380-2391 VL - 4 IS - 1 SP - Article 1000191, 1 EP - 8 PB - Omics International CY - Los Angeles AN - OPUS4-40239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Braun, Ulrike T1 - Wirkungsmechanismen von Rotem Phosphor als Flammschutzmittel in Thermoplasten N2 - Das Brandverhalten von Rotem Phosphor in HIPS, PBT und PA66 wurde untersucht. Es wurde gezeigt, wie die Wirksamkeit von Rotem Phosphor in HIPS and PBT durch Kombination mit anderen Flammschutzmitteln zu verbessern ist. N2 - Polymers are flammable due to their chemical nature. As a consequence they must be treated with flame-retardants before they can be used in fields with high flammability risks, such as transport, electronic devices and building construction. The use of red phosphorus as a fire retardant has been encouraged because it is an environmentally friendly alternative to halogenated compounds. The intention of this thesis was to evaluate the potential of red phosphorus as a flame retardant and to determine its fire-retardant mechanisms in different thermoplastics. The thermal decomposition and combustion behaviour of HIPS, PBT and PA66 containing red phosphorus was studied. It further investigated how the activity and efficiency of red phosphorus in HIPS and PBT was influenced by additional flame retardants such as melamine polyphosphate, melamine cyanurate and magnesium hydroxide. The decomposition process was characterized by means of different thermogravimetric methods (TG-FTIR, TG-MS), and the combustion behaviour by cone calorimeter measurements at various external heat fluxes. The flammability was investigated with LOI and the residue of combustion was analysed by means of XPS. Based on these results models for decomposition process were postulated. Red phosphorus can act both by promoting char formation in the condensed phase, and through radical trapping in the gas phase. Red phosphorus acts in the condensed phase in PA66, and in the gas phase in HIPS. In PBT both mechanisms were observed, depending on the pH value. When red phosphorus is combined with fuel-dilution additives such as melamine species in HIPS and PBT, both flame retardants act independently. The combustion behaviour of the combined material can be described by superposition of the distinct flame-retarded materials. In the presence of a barrier former, such as magnesium hydroxide in HIPS, the gas-phase mechanism of red phosphorus remains unaffected; however, a slight anti-synergism results. This is based on formation of a magnesium phosphate barrier, which influences the efficiency of phosphorus as a radical trap. The results showed that the activity of phosphorus as a flame retardant in thermoplastics depends on the water content of the polymer, the pH value and the presence of functional groups in the polymer. The efficiency of phosphorus as a flame retardant in the condensed and gas phases depends on combustion conditions. T3 - BAM Dissertationsreihe - 10 KW - Roter Phosphor KW - Flammschutzmittel KW - Thermoplasten PY - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-1486 SN - 978-3-86509-303-5 SN - 1613-4249 VL - 10 SP - 1 EP - 164 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-148 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Schwarz, U. A1 - Reinemann, S. ED - Lewin, M. T1 - Fire Retarded Polypropylene/Flax Biocomposites T2 - 14th Conference on Recent Advances in Flame Retardancy of Polymeric Materials ; 14th Annual BCC Conference on Flame Retardancy CY - Stamford, CT, USA DA - 2003-06-02 KW - Fire retardancy KW - PP/Flax Biocomposite KW - Expandable Graphite KW - Ammonium Polyphosphate KW - TG-FTIR KW - Cone Calorimeter PY - 2003 SN - 1-569-65930-3 VL - 14 SP - 219 EP - 228 PB - BCC CY - Norwalk, Conn. AN - OPUS4-2815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Fire Retardancy Mechanisms of Red Phosphorus in Thermoplastics N2 - The thermal decomposition and the fire behavior of glass fiber reinforced polyamide 66 (PA-66) and high impact polystyrene (HIPS) containing red phosphorus (P4) were investigated. For glass fiber reinforced PA-66, P4 promotes char formation in the condensed phase. Barrier effects and the reduction of combustible volatiles were identified as fire retardancy mechanisms. For HIPS, P4 acts in the gas phase, mainly trapping radicals. The heat release per mass loss polymer is reduced due to an incomplete combustion. T2 - 12th International Conference Additives 2003 CY - San Francisco, CA, USA DA - 2003-04-06 PY - 2003 UR - http://www.executive-conference.com/conferences/archives/abstracts2003/add03_abs5b.html SP - 1(?) EP - 10(?) PB - ECM CY - Plymouth, Mich. AN - OPUS4-2502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard A1 - Kunze, Ralf A1 - Neubert, Dietmar A1 - Braun, Ulrike ED - Lewin, M. T1 - Mechanistic Studies on PA-66 Fire Retarded with Red Phosphorus T2 - 13th Conference on Recent Advances in Flame Retardancy of Polymeric Materials ; 13th Annual BCC Conference on Flame Retardancy CY - Stamford, CT, USA DA - 2002-06-03 PY - 2002 SN - 1-569-65890-0 VL - 13 SP - 93 EP - 103 PB - BCC CY - Norwalk, Conn. AN - OPUS4-1562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Braun, Ulrike A1 - Schwarz, U. A1 - Reinemann, S. T1 - Fire Retardancy of Polypropylene/Flax Blends N2 - A comprehensive characterization of the thermal and the fire behaviour is presented for polypropylene (PP) flax compounds containing ammonium polyphosphate (APP) and expandable graphite as fire retardants. Thermogravimetry coupled with an evolved gas analysis (TG-FTIR) was performed to ensure a significant thermal analysis. The fire response under forced flaming conditions was studied using a cone calorimeter. The external heat flux was varied between 30 and 70 kW m-2 so that the results could be evaluated for different fire scenarios and tests. Different flammability tests (UL 94, limiting oxygen index, glow wire test, GMI 60261) were performed and the results compared with the cone calorimeter data. The different char forming mechanisms are described and the resulting fire retardancy is classified. The successful and ecological friendly fire retardancy is a technological breakthrough for PP/flax biocomposites. KW - Biosomposites KW - Flame retardancy KW - Flax PY - 2003 U6 - https://doi.org/10.1016/S0032-3861(03)00692-X SN - 0032-3861 SN - 1873-2291 VL - 44 IS - 20 SP - 6241 EP - 6250 PB - Springer CY - Berlin AN - OPUS4-2640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Braun, Ulrike T1 - Fire Retardancy Mechanisms of Phosphorus in Thermoplastics KW - Fire retardancy KW - Red Phosphorus KW - Cone Calorimeter KW - TG-FTIR KW - TG-MS KW - HIPS KW - PBT KW - PA 66 PY - 2004 SN - 0743-0515 VL - 91 SP - 152 EP - 153 PB - Division of Polymeric Materials Science and Engineering, American Chemical Society CY - Washington, DC AN - OPUS4-3971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Red phosphorus as Flame Retardant in Thermoplastics T2 - BASF AG CY - Ludwigshafen am Rhein, Germany DA - 2003-09-11 PY - 2003 AN - OPUS4-4027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Braun, Ulrike A1 - Schartel, Bernhard T1 - Interaction of Red Phosphorus, Melanine Polyphosphate and Magnesium Hydroxide as Fire Retardant in HIPS T2 - 9th European Meeting on Fire Retardancy and Protection of Materials, FRPM '03 CY - Lille, France DA - 2003-09-17 PY - 2003 AN - OPUS4-4028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schartel, Bernhard A1 - Braun, Ulrike T1 - Mechanisms of Phosphorous Flame Retardants T2 - 12th International Flame Retardants 2006 Conference CY - London, England, UK DA - 2006-02-14 PY - 2006 SN - 0-9541216-7-8 SP - 153 EP - 154 PB - Interscience Communications CY - London AN - OPUS4-12078 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -