TY - JOUR A1 - Kneipp, Janina A1 - Li, X. A1 - Sherwood, M. A1 - Panne, Ulrich A1 - Kneipp, H. A1 - Stockman, M.I. A1 - Kneipp, K. T1 - Gold Nanolenses Generated by Laser Ablation-Efficient Enhancing Structure for Surface Enhanced Raman Scattering Analytics and Sensing N2 - Nanoaggregates formed by metal spheres of different radii and interparticle distances represent finite, deterministic, self-similar systems that efficiently concentrate optical fields and act as “nanolenses”. Here we verify experimentally the theoretical concept of nanolenses and explore their potential as enhancing nanostructures in surface enhanced Raman scattering (SERS). Self-similar structures formed by gold nanospheres of different sizes are generated by laser ablation from solid gold into water. These nanolenses exhibit SERS enhancement factors on the order of 109. The “chemically clean” preparation process provides several advantages over chemically prepared nanoaggregates and makes the stable and biocompatible gold nanolenses potent enhancing structures for various analytical and sensing applications. KW - SERS KW - Ablation KW - Gold-Nanopartikel PY - 2008 DO - https://doi.org/10.1021/ac8002215 SN - 0003-2700 SN - 1520-6882 VL - 80 IS - 11 SP - 4247 EP - 4251 PB - American Chemical Society CY - Washington, DC AN - OPUS4-18231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bahlmann, Arnold A1 - Weller, Michael G. A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - Monitoring carbamazepine in surface and wastewaters by an immunoassay based on a monoclonal antibody N2 - The pharmaceutical compound carbamazepine (CBZ) is an emerging pollutant in the aquatic environment and may potentially be used as a wastewater marker. In this work, an enzyme-linked immunosorbent assay (ELISA) for the detection of carbamazepine in surface and sewage waters has been developed. The heterogeneous immunoassay is based on a commercially available monoclonal antibody and a novel enzyme conjugate (tracer) that links the hapten via a hydrophilic peptide (triglycine) spacer to horseradish peroxidase. The assay achieves a limit of detection of 24 ng/L and a quantitation range of 0.05-50 µg/L. The analytical performance and figure of merits were compared to liquid chromatography-tandem mass spectrometry after solid-phase extraction. For nine Berlin surface water samples and one wastewater sample, a close correlation of results was observed. A constant overestimation relative to the CBZ concentration of approximately 30% by ELISA is probably caused by the presence of 10,11-epoxy-CBZ and 2-hydroxy-CBZ in the samples. The ELISA displayed cross-reactivities for these compounds of 83% and 14%, respectively. In a first screening of 27 surface water samples, CBZ was detected in every sample with concentrations between 0.05 and 3.2 µg/L. Since no sample cleanup is required, the assay allowed for the determination of carbamazepine with high sensitivity at low costs and with much higher throughput than with conventional methods. KW - Carbamazepine KW - ELISA KW - Antibody KW - Immunoassay KW - Surface water KW - LC-MS/MS KW - Pharmaceuticals PY - 2009 DO - https://doi.org/10.1007/s00216-009-2958-7 SN - 1618-2642 SN - 1618-2650 VL - 395 IS - 6 SP - 1809 EP - 1820 PB - Springer CY - Berlin AN - OPUS4-20927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García Fernández, J. A1 - Sánchez-González, C. A1 - Bettmer, J. A1 - Llopi, J. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Montes-Bayón, M. T1 - Quantitative assessment of the metabolic products of iron oxide nanoparticles to be used as iron supplements in cell cultures N2 - Iron nanoparticles (NPs) metabolism is directly associated to human health due to their use as anemia treatment and should be studied in detail in cells. Here we present a speciation strategy for the determination of the metabolic products of iron oxide nanoparticles coated by tartaric and adipic acids in enterocytes-like cell models (Caco-2 and HT-29). Such methodology is based on the use of SDS-modified reversed phase high performance liquid chromatography (HPLC) separation using inductively coupled plasma-mass spectrometry (ICP-MS) as Fe selective detector. Post-column isotope dilution analysis is used as quantification tool by adding Fe-57 as isotopically enriched standard. To assess the separation capability of the method, two different iron nanostructures: iron sucrose nanoparticles -Venofer®- used as model suspension and iron tartrate/adipate-modified nanoparticles, both of about 4 nm (core size) were evaluated. The two nanostructures were injected into the system showing good peak profiles and quantitative elution recoveries (>80%) in both cases. In addition, both nanoparticulate fractions could be based-line separated from ionic iron species, which needed to be complexed with 1mM citrate to elute from the column. Exposed cells up to 0.5mM of iron tartrate/adipate-modified nanoparticles were specifically treated to extract the internalized NPs and the extracts examined using the proposed strategy. The obtained results revealed the presence of three different fractions corresponding to nanoparticle aggregates, dispersed nanoparticles and soluble iron respectively in a single chromatographic run. Quantitative experiments (column recoveries ranging from 60 to 80%) revealed the presence of the majority of the Fe in the nanoparticulated form (>75%) by summing up the dispersed and aggregate particles. Such experiments point out the high uptake and low solubilization rate of the tartrate/adipate NPs making these structures highly suitable as Fe supplements in oral anemia treatments. KW - Fe nanoparticles metabolism KW - Cells KW - HPLC-ICP-MS KW - Species-unspecific on-line isotope dilution PY - 2018 DO - https://doi.org/10.1016/j.aca.2018.08.003 SN - 0003-2670 VL - 1039 SP - 24 EP - 30 PB - Elsevier CY - Amsterdam AN - OPUS4-46817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giesen, C. A1 - Müller, Larissa A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - History of inductively coupled plasma mass spectrometry-based immunoassays N2 - The analysis of biomolecules requires highly sensitive and selective detection methods capable of tolerating a complex, biological matrix. First applications of biomolecule detection by ICP-MS relied on the use of heteroelements as a label for quantification. However, the combination of immunoassays and ICP-MS facilitates multiparametric analyses through elemental tagging, and provides a powerful alternative to common bioanalytical methods. This approach extends the detection of biomarkers in clinical diagnosis, and has the potential to provide a deeper understanding of the investigated biological system. The results might lead to the detection of diseases at an early stage, or guide treatment plans. Immunoassays are well accepted and established for diagnostic purposes, albeit ICP-MS is scarcely applied for the detection of immune-based assays. However, the screening of biomarkers demands high throughput and multiplex/multiparametric techniques, considering the variety of analytes to be queried. Finally, quantitative information on the expression level of biomarkers is highly desirable to identify abnormalities in a given organism. Thus, it is the aim of this review to introduce the fundamentals, and to discuss the enormous strength of ICP-MS for the detection of different immunoassays on the basis of selected applications, with a special focus on LA-ICP-MS. KW - ICP-MS KW - LA-ICP-MS KW - Immunoassay KW - Elemental tagging KW - Multiplexing PY - 2012 DO - https://doi.org/10.1016/j.sab.2012.06.009 SN - 0584-8547 SN - 0038-6987 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. VL - 76 SP - 27 EP - 39 PB - Elsevier CY - Amsterdam AN - OPUS4-27686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Konrad A1 - Traub, Heike A1 - Wanka, Antje Jutta A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Quantification of metals in single cells by LA-ICP-MS: Comparison of single spot analysis and imaging N2 - LA-ICP-MS is increasingly used for single cell analysis in two different detection modes using either the imaging mode with subcellular resolution or alternatively single spot analysis of cells with a larger laser spot size. This study compares the analytical figures of merit of both detection modes (signal to noise, precision, accuracy, throughput), as well as ease of operation and data evaluation. Adherent 3T3 fibroblast cells were stained with two metal dyes (mDOTA-Ho, Ir-DNA-intercalator) and several dozen cells were measured using both modes. We found a ten times higher throughput for single spot analysis, which has as well a straightforward data analysis, shortening the total analysis time further. The signal to noise ratio for single spot analysis was found to be slightly better compared to the signal to noise of pixels in imaging. The mean metal intensity per single cell differed by only 10% between both modes and obtained distributions were found to show no statistically significant differences. Using matrix matched calibration based on standards spotted onto nitrocellulose membrane, we achieved detection limits (10s) of 12 fg for Ir and 30 fg for Ho and quantified 57 +/-35 fg Ir and 1192 +/- 707 fg Ho per single cell. Compared to a conventional ICP-MS measurement of a digest of about 60000 cells, 54% of Ir content and 358% Ho content was found using quantitative LA-ICP-MS. The difference might be a consequence of the two metal dyes binding to different structures of the cell and therefore might behave differently in sample preparation for conventional and LA-ICP-MS. KW - Cells KW - Laser ablation KW - ICP-MS KW - Metals KW - Quantification PY - 2018 DO - https://doi.org/10.1039/c8ja00191j SN - 0267-9477 VL - 33 IS - 9 SP - 1579 EP - 1587 PB - RSC Royal Society of Chemistry CY - London AN - OPUS4-46441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Loehr, Konrad A1 - Jakubowski, Norbert A1 - Wanka, Antje Jutta A1 - Traub, Heike A1 - Panne, Ulrich T1 - Quantification of metals in single cells by LA-ICP-MS comparison of single spot analysis and imaging N2 - LA-ICP-MS is increasingly used for single cell analysis in two different detection modes using either the imaging mode with subcellular resolution or alternatively single spot analysis of cells with a larger laser spot size. This study compares the analytical figures of merit of both detection modes (signal to noise, precision, accuracy, throughput), as well as ease of operation and data evaluation. Adherent 3T3 fibroblast cells were stained with two metal dyes (mDOTA-Ho, Ir-DNA-intercalator) and several dozen cells were measured using both modes. We found a ten times higher throughput for single spot analysis, which has as well a straightforward data analysis, shortening the total analysis time further. The signal to noise ratio for single spot analysis was found to be slightly better compared to the signal to noise of pixels in imaging. The mean metal intensity per single cell differed by only 10% between both modes and obtained distributions were found to show no statistically significant differences. Using matrix matched calibration based on standards spotted onto nitrocellulose membrane, we achieved detection limits (10 σ) of 12 fg for Ir and 30 fg for Ho and quantified 57 ± 35 fg Ir and 1,192 ± 707 fg Ho per single cell. Compared to a conventional ICP-MS measurement of a digest of ~60,000 cells, 54 % of Ir content and 358 % Ho content was found using quantitative LA-ICP-MS. The difference might be a consequence of the two metal dyes binding to different structures of the cell and therefore might behave differently in sample preparation for conventional and LA-ICP-MS. KW - Single cell analysis KW - LA-ICP-MS PY - 2018 DO - https://doi.org/10.1039/c8ja00191j SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 9 SP - 1579 EP - 1587 PB - Royal Society of Chemistry AN - OPUS4-45903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shigeta, K. A1 - Koellensperger, G. A1 - Rampler, E. A1 - Traub, Heike A1 - Rottmann, L. A1 - Panne, Ulrich A1 - Okino, A. A1 - Jakubowski, Norbert T1 - Sample introduction of single selenized yeast cells (Saccharomyces cerevisiae) by micro droplet generation into an ICP-sector field mass spectrometer for label-free detection of trace elements N2 - We have applied a micro droplet generator (µDG) for sample introduction of single selenized yeast cells into a sector field ICP-MS, which was operated in a fast scanning mode with sampling rates of up to 10 kHz, to measure single cells time resolved with 100 µs integration time. Selenized yeast cells have been used as a model system for preliminary investigation. The single cells to be measured have been embedded into droplets and it will be shown that the time duration of a single cell event always is about 400 to 500 µs, and thus comparable to the time duration of a droplet without a cell. A fixed droplet generation rate of 50 Hz produced equidistant signals in time of each droplet event and was advantageous to separate contribution from background and blank from the analytical signal. Open vessel digestion and a multielement analysis were performed with washed yeast cells and absolute amounts per single cell were determined for Na (0.91 fg), Mg (9.4 fg), Fe (5.9 fg), Cu (0.54 fg), Zn (1.2 fg) and Se (72 fg). Signal intensities from single cells have been measured for the elements Cu, Zn and Se, and histograms were calculated for about 1000 cell events. The mean elemental sensitivities measured here range from 0.7 counts per ag (Se) to 10 counts per ag (Zn) with RSD's from 49% (Zn) to 69% (Se) for about 1000 cell events. PY - 2013 DO - https://doi.org/10.1039/c3ja30370e SN - 0267-9477 SN - 1364-5544 VL - 28 IS - 5 SP - 637 EP - 645 PB - Royal Society of Chemistry CY - London AN - OPUS4-29448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gopala, Anil A1 - Kipphardt, Heinrich A1 - Matschat, Ralf A1 - Panne, Ulrich T1 - Process methodology for the small scale production of m6N5 purity zinc using a resistance heated vacuum distillation system N2 - Ultra high purity Zn (m6N5) was obtained through triple vacuum distillation using an m4N5 Zn as input material. High-volatile impurities were removed from the zinc matrix by vacuum evaporation, while traces having lower volatility than the matrix remained in the residual material after finishing of the entire purification process. The time required for the removal of the main high-volatile impurity (Cd) was monitored using a connected gas source mass spectrometer. During distillation the Zn vapor of the distillate was condensed on the cap of a glassy carbon crucible which was water cooled by a movable copper block. The temperatures were optimized for the removal of the volatiles and for the distillation process using vapor pressure data. High resolution glow discharge mass spectrometry was applied for the analysis and purity evaluation of the distilled and input zinc. The analysis confirmed the reduction of the metallic impurities from 43 mg kg-1 to 0.5 mg kg-1 (m6N5) after three consecutive vacuum distillations. An increase in the grain size and a decrease in the micro-hardness were observed for the purified Zn material. KW - Ultra high purity KW - Vacuum distillation KW - High resolution glow discharge mass KW - Spectrometry KW - Micro-hardness KW - Zinc KW - Purification PY - 2010 DO - https://doi.org/10.1016/j.matchemphys.2010.02.080 SN - 0254-0584 VL - 122 IS - 1 SP - 151 EP - 155 PB - Elsevier CY - Amsterdam AN - OPUS4-21127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garcia-Fernandez, J. A1 - Turiel, D. A1 - Bettmer, J. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Rivas Garcia, L. A1 - Llopis, J. A1 - Sanchez-Gonzalez, C. A1 - Montes-Bayon, M. T1 - In vitro and in situ experiments to evaluate the biodistribution and cellular toxicity of ultrasmall iron oxide nanoparticles potentially used as oral iron supplements N2 - Well-absorbed iron-based nanoparticulated materials are a promise for the oral management of iron deficient anemia. In this work, a battery of in vitro and in situ experiments are combined for the evaluation of the uptake, distribution and toxicity of new synthesized ultrasmall (4 nm core) Fe2O3 nanoparticles coated with tartaric/adipic acid with potential to be used as oral Fe supplements. First, the in vitro simulated gastric acid solubility studies by TEM and HPLC-ICP-MS reveal a partial reduction of the core size of about 40% after 90 min at pH3. Such scenario confirms the arrival of the nanoparticulate material in the small intestine. In the next step, the in vivo absorption through the small intestine by intestinal perfusion experiments is conducted using the sought nanoparticles in Wistar rats. The quantification of Fe in the NPs Suspension before and after perfusion shows Fe absorption levels above 79%, never reported for other Fe treatments. Such high absorption levels do not seem to compromise cell viability, evaluated in enterocytes-like models (Caco-2 and HT-29) using cytotoxicity, ROS production, genotoxicity and lipid peroxidation tests. Moreover, regional differences in terms of Fe concentration are obtained among different parts of the small intestine as duodenum>jejunum>ileum. Complementary transmission electron microscopy (TEM) images show the presence of the intact particles around the intestinal microvilli without significant tissue damage. These studies show the high potential of these NP preparations for their use as oral management of anemia. KW - Iron nanoparticles KW - Anemia KW - ICP-MS KW - In vitro KW - In situ PY - 2020 DO - https://doi.org/10.1080/17435390.2019.1710613 VL - 14 IS - 3 SP - 388 EP - 403 PB - Taylor & Francis Online CY - London AN - OPUS4-50314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinthalapati, Siva Kesava Raju A1 - Lück, Detlef A1 - Scharf, Holger A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A novel solid phase extraction method for pre-concentration of gadolinium and gadolinium based MRI contrast agents from the environment N2 - An efficient solid phase extraction (SPE) method using bis-(2-ethylhexyl)-phosphate (HDEHP) coated reverse phase C18 support has been developed for the pre-concentration of Gadolinium (Gd) and Gd contrast agents widely used in magnetic resonance imaging (MRI). Enrichment of Gd in the ionic form has been compared with strong cation exchange material Chromabond SA (SCX), weak ion exchange material Chelex-100 and also with lanthanide specific HDEHP modified reverse phase C18. The determination of Gd and its complexes after enrichment were performed using inductively coupled plasma mass spectrometry (ICP-MS) and on the basis of 158Gd. Among the three SPE materials, HDEHP coated reverse phase C18 SPE has been found to be most efficient, yielding a hundredfold Gd enrichment with > 95% recovery for linear and cyclic contrast agents like Gd-DTPA (Magnevist), Gd-DOTA (Dotarem), Gd-BOPTA (Multihance), and Gd-BT-DO3A (Gadovist). The developed SPE method has been successfully applied to the surface water and waste water samples originated from different places in Berlin, Germany. The results were in good agreement with the results obtained with direct measurement with ICP-MS. The developed pre-concentration method can be efficiently used for the determination of trace levels of gadolinium in the environment even with less sensitive analytical techniques. KW - Solid phase extraction KW - Magnetic resonance imaging KW - Gadolinium KW - Gd based contrast agents KW - Chelex-100 KW - HDEHP KW - Speciation PY - 2010 DO - https://doi.org/10.1039/c003251d SN - 0267-9477 SN - 1364-5544 VL - 25 IS - 10 SP - 1573 EP - 1580 PB - Royal Society of Chemistry CY - London AN - OPUS4-21985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -