TY - JOUR A1 - Lingott, Jana A1 - Lindner, Uwe A1 - Telgmann, Lena A1 - Esteban-Fernández, Diego A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Gadolinium-uptake by aquatic and terrestrial organisms-distribution determined by laser ablation inductively coupled plasma mass spectrometry JF - ENVIRONMENTAL SCIENCE-PROCESSES & IMPACTS N2 - The uptake of gadolinium containing chelates by plants and animals grown in exposed water or on soil irrigated with exposed water was investigated. Gd contrast agents was studied by monitoring the elemental distribution with laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). KW - Gadolinium-uptake KW - Speciation KW - HILIC KW - ICP-MS PY - 2016 DO - https://doi.org/10.1039/c5em00533g SN - 2050-7887 VL - 18 IS - 2 SP - 200 EP - 207 PB - Royal Society of Chemistry CY - Cambridge, UK AN - OPUS4-36281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinthalapati, Siva Kesava Raju A1 - Lück, Detlef A1 - Scharf, Holger A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A novel solid phase extraction method for pre-concentration of gadolinium and gadolinium based MRI contrast agents from the environment JF - Journal of analytical atomic spectrometry N2 - An efficient solid phase extraction (SPE) method using bis-(2-ethylhexyl)-phosphate (HDEHP) coated reverse phase C18 support has been developed for the pre-concentration of Gadolinium (Gd) and Gd contrast agents widely used in magnetic resonance imaging (MRI). Enrichment of Gd in the ionic form has been compared with strong cation exchange material Chromabond SA (SCX), weak ion exchange material Chelex-100 and also with lanthanide specific HDEHP modified reverse phase C18. The determination of Gd and its complexes after enrichment were performed using inductively coupled plasma mass spectrometry (ICP-MS) and on the basis of 158Gd. Among the three SPE materials, HDEHP coated reverse phase C18 SPE has been found to be most efficient, yielding a hundredfold Gd enrichment with > 95% recovery for linear and cyclic contrast agents like Gd-DTPA (Magnevist), Gd-DOTA (Dotarem), Gd-BOPTA (Multihance), and Gd-BT-DO3A (Gadovist). The developed SPE method has been successfully applied to the surface water and waste water samples originated from different places in Berlin, Germany. The results were in good agreement with the results obtained with direct measurement with ICP-MS. The developed pre-concentration method can be efficiently used for the determination of trace levels of gadolinium in the environment even with less sensitive analytical techniques. KW - Solid phase extraction KW - Magnetic resonance imaging KW - Gadolinium KW - Gd based contrast agents KW - Chelex-100 KW - HDEHP KW - Speciation PY - 2010 DO - https://doi.org/10.1039/c003251d SN - 0267-9477 SN - 1364-5544 VL - 25 IS - 10 SP - 1573 EP - 1580 PB - Royal Society of Chemistry CY - London AN - OPUS4-21985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, Uwe A1 - Lingott, Jana A1 - Richter, Silke A1 - Jiang, W. A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Analysis of Gadolinium-based contrast agents in tap water with a new hydrophilic interaction chromatography (ZIC-cHILIC) hyphenated with inductively coupled plasma mass spectrometry JF - Analytical and bioanalytical chemistry N2 - Hydrophilic interaction chromatography (HILIC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) were optimised for the direct determination of gadolinium-based contrast agents in tap water. In comparison to our previous work, a new developed zwitterionic HILIC column (ZIC-cHILIC) was used for speciation of Gd-containing contrast agents. The limit of quantification (LOQ) for the five contrast agents Gd-BOPTA, Gd-DPTA-BMA, Gd-BT-DO3A, Gd-DOTA and Gd-DTPA are in the range of 5–12 ng Gd per litre. Additionally, a new internal standard, Pr-DOTA, was investigated to correct intensity drifts, minor and major changes in the sample volumes and possible matrix effects. With the speciation method described, tap water samples from the area of Berlin were analysed and for the first time, three Gd species, Gd-BT-DO3A, Gd-DOTA and Gd-BOPTA, were found in tap water samples at concentrations of about 10–20 ng Gd per litre. These are the same Gd species which have been previously detected predominantly in surface waters of the Berlin area. KW - Gadolinium-based contrast agents KW - Hydrophilic interaction chromatography (HILIC) KW - Speciation KW - Inductively coupled plasma mass spectrometry (ICP-MS) KW - Internal standard KW - Berlin tap water PY - 2015 DO - https://doi.org/10.1007/s00216-014-8368-5 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 9 SP - 2415 EP - 2422 PB - Springer CY - Berlin AN - OPUS4-32982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A. A1 - Weidner, Steffen A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Bettmer, J. T1 - Separation and quantification of silver nanoparticles and silver ions using reversed phase high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry in combination with isotope dilution analysis JF - Journal of Chromatography A N2 - A reversed phase high performance liquid chromatography coupled to an inductively coupled Plasma mass spectrometer (HPLC–ICP-MS) approach in combination with isotope dilution analysis (IDA) for the separation and parallel quantification of nanostructured and ionic silver (Ag) is presented. The main Focus of this work was the determination of the ionic Ag concentration. For a sufficient stabilization of the Ions without dissolving the nanoparticles (NPs), the eluent had to be initially optimized. The determined Ag ion concentration was in a good agreement with results obtained using ultrafiltration. Further, the mechanism of the NP separation in the HPLC column was investigated. Typical size exclusion effects were found by comparing results from columns with different pore sizes. Since the recovery rates decreased with increasing Ag NP size and large Ag NPs did not elute from the column, additional interactions of the particles with the stationary phase were assumed. Our results reveal that the presented method is not only applicable to Ag NPs, but also to gold and polystyrene NPs. Finally, IDA-HPLC-ICP-MS experiments in single particle mode were performed to determine the particle cut-off size. The comparison with conventional spICP-MS experiments resulted in a similar diameter and particle size distribution. KW - ICP-MS KW - Silver nanoparticles KW - Speciation KW - High performance liquid chromatography KW - Isotope dilution analysis PY - 2016 DO - https://doi.org/10.1016/j.chroma.2016.09.028 SN - 0021-9673 VL - 1468 SP - 102 EP - 108 AN - OPUS4-37652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - García-Fernández, J. A1 - Bettmer, J. A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Añón, E. A1 - Montes-Bayón, M. A1 - Sanz-Medel, A. T1 - The fate of iron nanoparticles used for treatment of iron deficiency in blood using mass-spectrometry based strategies JF - Microchim Acta N2 - The release of iron from iron nanoparticles (NPs) used as parenteral formulations appears to be influenced by the size and surface properties of the colloidal iron complex and the matrix. A clinically applied product Venofer® has been used as a model formulation to establish adequate analytical strategies to evaluate the fate of iron nanoparticles (NPs) in blood. First, the preparation was characterized by high resolution transmission electron microscopy (HRTEM), dynamic light scattering (DLS) and UV-vis absorption spectroscopy. This revealed the presence of monodisperse iron NPs with a hydrodynamic diameter of ∼15 nm and an iron core of ∼4 nm. Venofer® was then incubated with serum and whole blood in a quantitative study on the iron bioavailability from these NPs. Iron was speciated and quantified by using inductively coupled plasma mass spectrometry (ICP-MS). Iron solubilization levels of up to 42% were found in both fluids using isotope dilution of iron for quantification within the first hour of incubation even in the absence of the reticuloendothelial system. The monitoring of the iron-containing proteins present in serum was conducted by highperformance liquid chromatography with ICP-MS detection. It indicated that the dissolved iron ions are bound to transferrin. Quantitative speciation studies using isotope pattern deconvolution experiments concluded that the released iron saturated almost completely (up to 90%) the metal binding sites of transferrin. The remaining iron appeared also associated to albumin and, to a lesser extent, forming smaller sized particles. Thus, the methods presented here provide new insights into the fate of Venofer® nanoparticles and may be applied to other formulations. KW - Iron-sucrose nanoparticles KW - Serum KW - Bioavailability KW - Speciation KW - HPLC KW - ICP-MS PY - 2017 DO - https://doi.org/10.1007/s00604-017-2388-8 SN - 0026-3672 SN - 1436-5073 VL - 184 IS - 10 SP - 3673 EP - 3680 AN - OPUS4-43128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chinthalapati, Siva Kesava Raju A1 - Cossmer, Antje A1 - Scharf, Holger A1 - Panne, Ulrich A1 - Lück, Detlef T1 - Speciation of gadolinium based MRI contrast agents in environmental water samples using hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry JF - Journal of analytical atomic spectrometry KW - HPLC-ICP-MS KW - HILIC chromatography KW - Speciation KW - Gadolinium KW - MRI contrast agent PY - 2010 DO - https://doi.org/10.1039/b919959d SN - 0267-9477 SN - 1364-5544 VL - 25 SP - 55 EP - 61 PB - Royal Society of Chemistry CY - London AN - OPUS4-20705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, Uwe A1 - Lingott, Jana A1 - Richter, Silke A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Speciation of gadolinium in surface water samples and plants by hydrophilic interaction chromatography hyphenated with inductively coupled plasma mass spectrometry JF - Analytical and bioanalytical chemistry N2 - Hydrophilic interaction chromatography (HILIC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) was optimized for speciation analysis of gadolinium-based contrast agents in environmental samples, in particular surface river waters and plants. Surface water samples from the Teltow channel, near Berlin, were investigated over a distance of 5 km downstream from the influx of a wastewater treatment plant. The total concentration of gadolinium increased significantly from 50 to 990 ngL-1 due to the influx of the contrast agents. After complete mixing with the river water, the concentration remained constant over a distance of at least 4 km. Two main substances [Dotarem® (Gd-DOTA) and Gadovist® (Gd-BT-DO3A)] have been identified in the river water using standards. A gadolinium-based contrast agent, possibly Gd-DOTA (Dotarem®), was also detected in water plant samples taken from the Teltow channel. Therefore, uptake of contrast agents [Gadovist® (Gd-BTDO3A), Magnevist® (Gd-DTPA), Omniscan® (Gd-DTPA-BMA), Dotarem® (Gd-DOTA), and Multihance® (Gd-BOPTA)] by plants was investigated in a model experiment using Lepidium sativum (cress plants). HILIC–ICP-MS was used for identification of different contrast agents, and a first approach for quantification using aqueous standard solutions was tested. For speciation analysis, all investigated contrast agents could be extracted from the plant tissues with a recovery of about 54 % for Multihance® (Gd-BOPTA) up to 106 % for Gadovist® (Gd-BT-DO3A). These experiments demonstrate that all contrast agents investigated are transported from the roots to the leaves where the highest content was measured. KW - Gadolinium-based contrast agents KW - Hydrophilic interaction chromatography (HILIC) KW - Speciation KW - Inductively coupled plasma mass spectrometry (ICP-MS) KW - Plants KW - Surface water PY - 2013 DO - https://doi.org/10.1007/s00216-012-6643-x SN - 1618-2642 SN - 1618-2650 VL - 405 IS - 6 SP - 1865 EP - 1873 PB - Springer CY - Berlin AN - OPUS4-27929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -