TY - JOUR A1 - Griesche, Axel A1 - Pfretzschner, B. A1 - Taparli, Ugur Alp A1 - Kardjilov, N. T1 - Time-Resolved Neutron Bragg-Edge Imaging: A Case Study by Observing Martensitic Phase Formation in Low Temperature Transformation (LTT) Steel during GTAW N2 - Polychromatic and wavelength-selective neutron transmission radiography were applied during bead-on-plate welding on 5 mm thick sheets on the face side of martensitic low transformation temperature (LTT) steel plates using gas tungsten arc welding (GTAW). The in situ visualization of austenitization upon welding and subsequent α’-martensite formation during cooling could be achieved with a temporal resolution of 2 s for monochromatic imaging using a single neutron wavelength and of 0.5 s for polychromatic imaging using the full spectrum of the beam (white beam). The spatial resolution achieved in the experiments was approximately 200 µm. The transmitted monochromatic neutron beam intensity at a wavelength of λ = 0.395 nm was significantly reduced during cooling below the martensitic start temperature Ms since the emerging martensitic phase has a ~10% higher attenuation coefficient than the austenitic phase. Neutron imaging was significantly influenced by coherent neutron scattering caused by the thermal motion of the crystal lattice (Debye–Waller factor), resulting in a reduction in the neutron transmission by approx. 15% for monochromatic and by approx. 4% for polychromatic imaging. KW - Austenite-to-martensite transformation KW - Neutron radiography KW - Bragg-edge imaging KW - Gas tungsten arc welding (GTAW) KW - Debye–Waller factor KW - Low transformation temperature (LTT) steel PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538016 DO - https://doi.org/10.3390/app112210886 VL - 11 IS - 22 SP - 10886 PB - MDPI CY - Basel AN - OPUS4-53801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichenauer, F. A1 - Wang, Cui A1 - Förster, C. A1 - Boden, P. A1 - Ugur, N. A1 - Báez-Cruz, R. A1 - Kalmbach, J. A1 - Carrella, L. M. A1 - Rentschler, E. A1 - Ramanan, C. A1 - Niedner-Schatteburg, G. A1 - Gerhards, M. A1 - Seitz, M. A1 - Resch-Genger, Ute A1 - Heinze, K. T1 - Strongly Red-Emissive Molecular Ruby [Cr(bpmp)2]3+ Surpasses [Ru(bpy)3]2+ N2 - Gaining chemical control over the thermodynamics and kinetics of photoexcited states is paramount to an efficient and sustainable utilization of photoactive transition metal complexes in a plethora of technologies. In contrast to energies of charge Transfer states described by spatially separated orbitals, the energies of spinflip states cannot straightforwardly be predicted as Pauli Repulsion and the nephelauxetic effect play key roles. Guided by multireference quantum chemical calculations, we report a novel highly luminescent spin-flip emitter with a quantum chemically predicted blue-shifted luminescence. The spin-flip emission band of the chromium complex [Cr(bpmp)2]3+ (bpmp = 2,6-bis(2-pyridylmethyl) pyridine) shifted to higher energy from ca. 780 nm observed for known highly emissive chromium(III) complexes to 709 nm. The photoluminescence quantum yields climb to 20%, and very long excited state lifetimes in the millisecond range are achieved at room temperature in acidic D2O solution. Partial ligand deuteration increases the quantum yield to 25%. The high excited state energy of [Cr(bpmp)2]3+ and its facile reduction to [Cr(bpmp)2]2+ result in a high excited state redox potential. The ligand’s methylene bridge acts as a Brønsted acid quenching the luminescence at high pH. Combined with a pH-insensitive chromium(III) emitter, ratiometric optical pH sensing is achieved with single wavelength excitation. The photophysical and Ground state properties (quantum yield, lifetime, redox potential, and acid/base) of this spin-flip complex incorporating an earth-abundant metal surpass those of the classical precious metal [Ru(α-diimine)3]2+ charge transfer complexes, which are commonly employed in optical sensing and photo(redox) catalysis, underlining the bright future of these molecular ruby analogues. KW - Fluorescence KW - Optical probe KW - Sensor KW - PH KW - Quantum yield KW - Quality assurance KW - Complex KW - Cr(III) KW - Lifetime KW - Ligand KW - Theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530548 DO - https://doi.org/10.1021/jacs.1c05971 VL - 143 IS - 30 SP - 11843 EP - 11855 PB - ACS Publications AN - OPUS4-53054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Griesche, Axel A1 - Pfretzschner, Beate A1 - Taparli, Ugur Alp A1 - Kardjilov, N. T1 - Time-Resolved Neutron Bragg-Edge Imaging: A Case Study by Observing Martensitic Phase Formation in Low Temperature Transformation (LTT) Steel during GTAW N2 - Polychromatic and wavelength-selective neutron transmission radiography were applied during bead-on-plate welding on 5 mm thick sheets on the face side of martensitic low transformation temperature (LTT) steel plates using gas tungsten arc welding (GTAW). The in situ visualization of austenitization upon welding and subsequent α’-martensite formation during cooling could be achieved with a temporal resolution of 2 s for monochromatic imaging using a single neutron wavelength and of 0.5 s for polychromatic imaging using the full spectrum of the beam (white beam). The spatial resolution achieved in the experiments was approximately 200 µm. The transmitted monochromatic neutron beam intensity at a wavelength of λ = 0.395 nm was significantly reduced during cooling below the martensitic start temperature M s since the emerging martensitic phase has a ~10% higher attenuation coefficient than the austenitic phase. Neutron imaging was significantly influenced by coherent neutron scattering caused by the thermal motion of the crystal lattice (Debye–Waller factor), resulting in a reduction in the neutron transmission by approx. 15% for monochromatic and by approx. 4% for polychromatic imaging. KW - Neutron radiography KW - Debye–Waller factor KW - Austenite-to-martensite transformation KW - Low transformation temperature (LTT) steel KW - Bragg-edge imaging KW - Gas tungsten arc welding (GTAW) PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559077 DO - https://doi.org/10.3390/app112210886 VL - 11 IS - 22 PB - MDPI AN - OPUS4-55907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -