TY - JOUR A1 - Merchel, Silke A1 - Ott, U. A1 - Altmaier, M. A1 - Herpers, U. A1 - Kuhnhenn, J. A1 - Michel, R. A1 - Mohapatra, R. K. T1 - Update on recoil loss of spallation products from presolar grains T2 - 64th Annual Meeting of the Meteoritical Society CY - Vatican City DA - 2001-09-10 PY - 2001 UR - http://adsabs.harvard.edu/abs/2001M&PSA..36Q.155O VL - 36 IS - 9, Suppl. SP - A155 EP - A156 PB - Allen Press CY - Lawrence, Kan. AN - OPUS4-1173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ott, U. A1 - Altmaier, M. A1 - Herpers, U. A1 - Kuhnhenn, J. A1 - Merchel, Silke A1 - Michel, R. A1 - Mohapatra, R.K. T1 - Spallation recoil II: Xenon evidence for young SiC grains KW - Presolar grains KW - Spallation KW - Exposure age KW - SiC PY - 2005 SN - 1086-9379 SN - 0026-1114 VL - 40 IS - 11 SP - 1635 EP - 1652 PB - Allen Press CY - Lawrence, Kan. AN - OPUS4-11694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stark, Wolfgang A1 - Goering, Harald A1 - Michel, U. A1 - Bayerl, H. T1 - Online monitoring of thermoset post-curing by dynamic mechanical thermal analysis DMTA N2 - Thermosetting moulding compounds are synthetic materials which can be easily formed in the molten state and achieve high temperature stability due to a cross-linking process which takes place during manufacture. To ensure thermal and mechanical properties, post-curing of moulded phenolic resin components is necessary for high quality applications. In the industrial practice, post-curing time-temperature-programs are heuristically acquired. In this paper, dynamical mechanical thermal analysis is employed to determine optimal post-curing conditions for injection moulded parts from phenolic resin. KW - DMTA KW - Moulding compound KW - Thermoset KW - Phenolic resin KW - Post-curing PY - 2009 DO - https://doi.org/10.1016/j.polymertesting.2009.02.005 SN - 0142-9418 VL - 28 IS - 6 SP - 561 EP - 566 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-19822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Angst, U.M. A1 - Geiker, M.R. A1 - Alonso, M.C. A1 - Polder, R. A1 - Isgor, O.B. A1 - Elsener, B. A1 - Wong, H. A1 - Michel, A. A1 - Hornbostel, K. A1 - Gehlen, C. A1 - François, R. A1 - Sanchez, M. A1 - Criado, M. A1 - Sørensen, H. A1 - Hansson, C. A1 - Pillai, R. A1 - Mundra, Shishir A1 - Gulikers, J. A1 - Raupach, M. A1 - Pacheco, J. A1 - Sagüés, A. T1 - The effect of the steel-concrete interface on chloride-induced corrosion initiation in concrete: a critical review by RILEM TC 262-SCI N2 - The steel–concrete interface (SCI) is known to influence corrosion of steel in concrete. However, due to the numerous factors affecting the SCI—including steel properties, concrete properties, execution, and exposure conditions—it remains unclear which factors have the most dominant impact on the susceptibility of reinforced concrete to corrosion. In this literature review, prepared by members of RILEM technical committee 262-SCI, an attempt is made to elucidate the effect of numerous SCI characteristics on chloride-induced corrosion initiation of steel in concrete. We use a method to quantify and normalize the effect of individual SCI characteristics based on different literature results, which allows comparing them in a comprehensive context. It is found that the different SCI characteristics have received highly unbalanced research attention. Parameters such as w/b ratio and cement type have been studied most extensively. Interestingly, however, literature consistently indicates that those parameters have merely a moderate effect on the corrosion susceptibility of steel in concrete. Considerably more pronounced effects were identified for (1) steel properties, including metallurgy, presence of mill scale or rust layers, and surface roughness, and (2) the moisture state. Unfortunately, however, these aspects have received comparatively little research attention. Due to their apparently strong influence, future corrosion studies as well as developments towards predicting corrosion initiation in concrete would benefit from considering those aspects. Particularly the working mechanisms related to the moisture conditions in microscopic and macroscopic voids at the SCI is complex and presents major opportunities for further research in corrosion of steel in concrete. KW - Steel-concrete interface KW - Interfacial transition zone KW - Durability KW - Corrosion KW - Inhomogeneity KW - Variability PY - 2019 DO - https://doi.org/10.1617/s11527-019-1387-0 VL - 52 IS - 4 SP - 88-1 EP - 88-25 PB - Springer Nature AN - OPUS4-48689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -