TY - JOUR A1 - Brand, U. A1 - Beckert, E. A1 - Beutler, A. A1 - Dai, G. A1 - Stelzer, C. A1 - Hertwig, Andreas A1 - Klapetek, P. A1 - Koglin, J. A1 - Thelen, R. A1 - Tutsch, R. T1 - Comparison of optical and tactile layer thickness measurements of polymers and metals on silicon or SiO2 JF - Measurement science and technology N2 - The thickness measurement of transparent layers with optical techniques is very problematic. The observed deviations can easily reach 100% of the layer thickness to be measured. In order to analyse these deviations, tactile reference measurements have been developed. The proposed method is based on contact mode measurements with low contact pressure. With stylus instruments, this can be realized either by using the recommended tip radius of 2 µm and very small probing forces in the micronewton range (and low scanning speeds of 50 µm s-1) or by using the recommended probing force of 750 µN, but a large probing tip radius. Three metal layers on silicon or silicon dioxide and two polymer resist materials on a thin chromium adhesive layer on silicon are used as artefacts. The comparison of the optical measurements with the tactile reference values disclosed deviations of the optical measurements of up to 195% of the layer thickness. Layer thicknesses were between 200 nm and 4 µm. This paper analyses the deviations of two white light interference microscopes, one phase shift interference microscope, one confocal microscope, one autofocus sensor, a chromatic sensor, an interferometric film thickness sensor and one spectroscopic ellipsometer. Simple and well-known expressions for the description of the observed deviations are presented and discussed. The order of magnitude of the observed deviations can be described well by these correction formulas but further investigations are necessary in order to better understand the systematic deviations of optical surface measuring instruments on non-cooperating surfaces. KW - Layer thickness KW - Stylus instrument KW - Deformation KW - Polymer KW - Silicon KW - Silicon dioxide PY - 2011 DO - https://doi.org/10.1088/0957-0233/22/9/094021 SN - 0957-0233 SN - 1361-6501 VL - 22 IS - 094021 SP - 094021-1 - 094021-14 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-24701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fahrbach, M. A1 - Friedrich, Sebastian A1 - Behle, H. A1 - Xu, Min A1 - Cappella, Brunero A1 - Brand, U. A1 - Peiner, E. T1 - Customized piezoresistive microprobes for combined imaging of topography and mechanical properties JF - Measurement: Sensors N2 - Customized piezoresistive cantilever microprobes with a deflection range of 120 μm and silicon tips of 100 μm height were operated in a Cypher AFM showing their functionality for measuring topography together with stiffness, adhesion, and viscoelastic properties of thin films. KW - Cantilever microprobe KW - Piezoresistive KW - Atomic force microscopy KW - Force-distance curves KW - Contact resonance KW - Lubricants PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524225 DO - https://doi.org/10.1016/j.measen.2021.100042 VL - 15 SP - 100042 PB - Elsevier Ltd. AN - OPUS4-52422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Z. A1 - Gao, S. A1 - Brand, U. A1 - Hiller, K. A1 - Wollschläger, Nicole A1 - Pohlenz, F. T1 - Note: Nanomechanical characterization of soft materials using a micro-machined nanoforce transducer with an FIB-made pyramidal tip JF - Review of Scientific Instruments N2 - The quantitative nanomechanical characterization of soft materials using the nanoindentation technique requires further improvements in the performances of instruments, including their force Resolution in particular. A micro-machined silicon nanoforce transducer based upon electrostatic comb drives featuring the force and depth resolutions down to 1 nN and 0.2 nm, respectively, is described. At the end of theMEMStransducer’s main shaft, a pyramidal tip is fabricated using a focused ion beam facility. A proof-of-principle setup with this MEMS nanoindenter has been established to measure the mechanical properties of soft polydimethylsiloxane. First measurement results demonstrate that the prototype measurement system is able to quantitatively characterize soft materials with elastic moduli down to a few MPa. KW - MEMS KW - Indentation KW - Soft material PY - 2017 DO - https://doi.org/10.1063/1.4977474 SN - 0034-6748 SN - 1089-7623 VL - 88 IS - 3 SP - 036104-1 EP - 036104-3 PB - AIP Publishing AN - OPUS4-39313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -