TY - JOUR A1 - Mishmastnehi, Moslem A1 - Stawski, Tomasz M. A1 - Eftekhari, Negar A1 - Schneider, Kathrin P. A1 - Vaccaro, Carmela A1 - Aghajani, Iman A1 - Grbanovic, Ana Marija A1 - Korn, Lorenz T1 - Unveiling the craftsmanship and knowledge behind iranian stuccoes (11th–14th centuries): New insights from an archaeometric perspective N2 - Gypsum-based stucco decorations of 47 monuments in Iran, from the Seljuq to the Ilkhanid period (11th-14th centuries), were studied by multimodal analytical methods, including X-ray diffraction, X-ray fluorescence, scanning electron microscopy and image analysis to evaluate their composition properties. The assessment of results shows that stucco masters in those periods exerted control over the setting process of the gypsum-paste and its microstructure by adjusting water-to-plaster ratio, fine-clay addition, and by means of mechanical processing. Furthermore, the presence of anhydrite in the composition of stucco decorations located in the hot-desert climate of Iran provides evidence for the probability of gypsum-anhydrite transition, which has technical and preservation consequences for this less-investigated type of cultural materials. KW - Gypsum KW - Diffraction KW - Anhydrite KW - Calcium sulfate PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-628406 DO - https://doi.org/10.1016/j.jas.2025.106199 SN - 1095-9238 VL - 177 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-62840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Besselink, R. A1 - Chatzipanagis, K. A1 - Hövelmann, J. A1 - Benning, L. G. A1 - Van Driessche, E. S. T1 - Nucleation Pathway of Calcium Sulfate Hemihydrate (Bassanite) from Solution: Implications for Calcium Sulfates on Mars N2 - CaSO4 minerals (i.e., gypsum, anhydrite, and bassanite) are widespread in natural and industrial environments. During the last several years, a number of studies have revealed that nucleation in the CaSO4–H2O system is nonclassical, where the formation of crystalline phases involves several steps. Based on these recent insights, we have formulated a tentative general model for calcium sulfate precipitation from solution. This model involves primary species that are formed through the assembly of multiple Ca2+ and SO42– ions into nanoclusters. These nanoclusters assemble into poorly ordered (i.e., amorphous) hydrated aggregates, which in turn undergo ordering into coherent crystalline units. The thermodynamic (meta)stability of any of the three CaSO4 phases is regulated by temperature, pressure, and ionic strength, with gypsum being the stable form at low temperatures and low-to-medium ionic strengths and anhydrite being the stable phase at high temperatures and at lower temperature for high salinities. Bassanite is metastable across the entire phase diagram but readily forms as the primary phase at high ionic strengths across a wide range of temperatures and can persist up to several months. Although the physicochemical conditions leading to bassanite formation in aqueous systems are relatively well established, nanoscale insights into the nucleation mechanisms and pathways are still lacking. To fill this gap and to further improve our general model for calcium sulfate precipitation, we conducted in situ scattering measurements at small-angle X-ray scattering and wide-angle X-ray scattering and complemented these with in situ Raman spectroscopic characterization. Based on these experiments, we show that the process of formation of bassanite from aqueous solutions is very similar to the formation of gypsum: it involves the aggregation of small primary species into larger disordered aggregates, only from which the crystalline phase develops. These data thus confirm our general model of CaSO4 nucleation and provide clues to explain the abundant occurrence of bassanite on the surface of Mars (and not on the surface of Earth). KW - Gypsum' SAXS KW - Calcium sulfate KW - Bassanite KW - Nucleation PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c01041 VL - 124 IS - 15 SP - 8411 EP - 8422 PB - American Chemical Society AN - OPUS4-50849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Besselink, R. A1 - Stawski, Tomasz A1 - Freeman, H. M. A1 - Hovelmann, J. A1 - Tobler, D. J. A1 - Benning, L. G. T1 - Mechanism of Saponite Crystallization from a Rapidly Formed Amorphous Intermediate N2 - Clays are crucial mineral phases in Earth’s weathering engine, but we do not know how they form in surface environments under (near-)ambient pressures and temperatures. Most synthesis routes, attempting to give insights into the plausible mechanisms, rely on hydrothermal conditions, yet many geological studies showed that clays may actually form at moderate temperatures (<100 °C) in most terrestrial settings. Here, we combined high-energy X-ray diffraction, infrared spectroscopy, and transmission electron microscopy to derive the mechanistic pathways of the low-temperature (25–95 °C) crystallization of a synthetic Mg-clay, saponite. Our results reveal that saponite crystallizes via a two stage process: (1) a rapid (several minutes) coprecipitation where ∼20% of the available magnesium becomes incorporated into an aluminosilicate network, followed by (2) a much slower crystallization mechanism (several hours to days) where the remaining magnesium becomes gradually incorporated into the growing saponite sheet structure. KW - Saponite KW - FTIR KW - PDF KW - Diffraction PY - 2020 DO - https://doi.org/10.1021/acs.cgd.0c00151 VL - 20 IS - 5 SP - 3365 EP - 3373 PB - American Chemical Society AN - OPUS4-50917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishmastnehi, M. A1 - Van Driessche, A. A1 - Smales, Glen Jacob A1 - Moya, A. A1 - Stawski, Tomasz T1 - Advanced materials engineering in historical gypsum plaster formulations N2 - We show how historical gypsum plaster preparation methods affect the microstructure and the wettability properties of the final stucco materials. We reproduced a traditional Persian recipe (Gach-e Koshteh, ~14th century AD), which involves a continuous mechanical treatment during plaster hydration. These samples were compared with a laboratory-replicated historical recipe from Renaissance Italy (Gesso Sottile, ~15th century AD) and contemporary low-strength plaster. The Koshteh recipe induces the formation of gypsum platelets, which exhibit preferential orientation in the plaster bulk. In contrast, the Italian and low-strength plasters comprise a typical needle-like morphology of gypsum crystals. The platelets in Koshteh expose the more hydrophilic {010} face of gypsum in a much more pronounced manner than needles. Consequently, the Iranian plaster displays enhanced wettability, enabling its direct use for water-based decoration purposes, or as a fine finishing thin layer, without the need of mixing it with a binder material. Contrary, in Sottile, gypsum crystals are left to equilibrate in large excess of water, which promotes the growth of long needles at the expense of smaller crystals. Typically, such needles are several times longer than those found in a control regular plaster. For this crystal habit, the total surface of hydrophilic faces is minimized. Consequently, such plaster layers tend to repel water, which can then be used, e.g., as a substrate for oilbased panel paintings. These findings highlight the development of advanced functional materials, by tuning their microtexture, already during the premodern era. KW - Gypsum KW - Calcium sulfate KW - Diffraction KW - Force microscopy PY - 2023 DO - https://doi.org/10.1073/pnas.2208836120  VL - 120 IS - 7 SP - 1 EP - 9 PB - National Academy of Sciences of the USA AN - OPUS4-57219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that nucleation in the calcium sulfate system is non-classical, involving the aggregation and reorganization of nanosized prenucleation particles. In a recent work we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant single micron-sized CaSO4 crystals. This property of CaSO4 minerals provides us with an unique opportunity to search for evidence of non-classical nucleation pathways in geological environments. In particular, we focused on the quintessential single crystals of anhydrite extracted from the Naica mine in Mexico. We elucidated the growth history from this mineral sample by mapping growth defects at different length scales. Based on these data we argue that the nano-scale misalignment of the structural sub-units observed in the initial calcium sulfate crystal seed propagate through different length-scales both in morphological, as well as strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nanoparticle mediated nucleation mechanism introduces a 'seed of imperfection', which leads to a macroscopic single crystal, in which its fragments do not fit together at different length-scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very well-defined walls/edges. But, at the same time the material retains its essential single crystal nature. These findings shed new light on the longstanding concept of crystal structure. T2 - S4SAS Conference 2021 CY - Online meeting DA - 01.09.2021 KW - SAXS KW - Calcium sulfate KW - Anhydrite KW - Mesocrystals PY - 2021 AN - OPUS4-53630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Supplementary data set for "Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals" N2 - In recent years, we have come to appreciate the astounding intricacy of the formation process of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that nucleation in the calcium sulfate system is non-classical, involving the aggregation and reorganization of nanosized prenucleation particles. In a recent work we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant single micron-sized CaSO4 crystals. This property of CaSO4 minerals provides us with an unique opportunity to search for evidence of non-classical nucleation pathways in geological environments. In particular, we focused on the quintessential single crystals of anhydrite extracted from the Naica mine in Mexico. We elucidated the growth history from this mineral sample by mapping growth defects at different length scales. Based on these data we argue that the nano-scale misalignment of the structural sub-units observed in the initial calcium sulfate crystal seed propagate through different length-scales both in morphological, as well as strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nanoparticle mediated nucleation mechanism introduces a 'seed of imperfection', which leads to a macroscopic single crystal, in which its fragments do not fit together at different length-scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very well-defined walls/edges. But, at the same time the material retains its essential single crystal nature. These findings shed new light on the longstanding concept of crystal structure. KW - Calcium sulfate KW - Mesocrystal KW - Anhydrite PY - 2021 DO - https://doi.org/10.5281/zenodo.4943234 PB - Zenodo CY - Geneva AN - OPUS4-53765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Scoppola, E. A1 - Jha, D. A1 - Morales, L. F. G. A1 - Moya, A. A1 - Wirth, R. A1 - Pauw, Brian Richard A1 - Emmerling, Franziska A1 - Van Driessche, A. E. S. T1 - Seeds of imperfection rule the mesocrystalline disorder in natural anhydrite single crystals N2 - In recent years, we have come to appreciate the astounding intricacies associated with the formation of minerals from ions in aqueous solutions. In this context, a number of studies have revealed that the nucleation of calcium sulfate systems occurs nonclassically, involving the aggregation and reorganization of nanosized prenucleation species. In recent work, we have shown that this particle-mediated nucleation pathway is actually imprinted in the resultant micrometer-sized CaSO4 crystals. This property of CaSO4 minerals provides us with the unique opportunity to search for evidence of nonclassical nucleation pathways in geological environments. In particular, we focused on large anhydrite Crystals extracted from the Naica Mine in Mexico. We were able to shed light on this mineral's growth history by mapping defects at different length scales. Based on this, we argue that the nanoscale misalignment of the structural subunits, observed in the initial calcium sulfate crystal seeds, propagates through different length scales both in morphological, as well as in strictly crystallographic aspects, eventually causing the formation of large mesostructured single crystals of anhydrite. Hence, the nonclassical nucleation mechanism introduces a “seed of imperfection,” which leads to a macroscopic “single” crystal whose fragments do not fit together at different length scales in a self-similar manner. Consequently, anisotropic voids of various sizes are formed with very welldefined walls/edges. However, at the same time, the material retains in part its single crystal nature. KW - Calcium sulfate KW - Anhydrite KW - Mesocrystal KW - Nucleation KW - Naica PY - 2021 DO - https://doi.org/10.1073/pnas.2111213118 SN - 0027-8424 VL - 118 IS - 48 SP - 1 EP - 11 PB - National Academy of Sciences (USA) CY - Washington AN - OPUS4-53820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fink, Friedrich A1 - Stawski, Tomasz M. A1 - Emmerling, Franziska A1 - Falkenhagen, Jana T1 - A novel machine-learning approach to unlock technical lignin classification by NIR spectroscopy - bench to handheld N2 - In this research, the utilization of near-infrared (NIR) spectroscopy in conjunction with advanced machine learning methods is investigated for categorizing technical lignins obtained from different biomass sources and industrial procedures. Technical lignins, such as kraft, organosolv and lignosulfonates, have different chemical compositions, which continue to make uniform characterization and application in sustainable sectors extremely difficult. Fast, universally accessible analytics combined with data analysis is still an open question. For the first time three distinct NIR spectrometers—a high-performance benchtop system, a mid-priced compact device, and an economical handheld unit—were utilized to record NIR spectra of 31 unique lignin samples. The spectra underwent pre-processing through standard normal variate (SNV) transformation and Savitzky-Golay derivatives to amplify spectral features and decrease noise. Principal component analysis (PCA) was employed to reduce data complexity and extract crucial characteristics for classification purposes. Subsequently, four machine learning algorithms—Support Vector Machines (SVM), Gaussian Naive Bayes (GNB), Gaussian Process Classification (GPC), and Decision Tree Classification (DTC)—were implemented for the classification of the lignin samples. The DTC model exhibited the highest accuracy among them across different spectrometers. Although the benchtop spectrometer produced the most precise outcomes, the compact NeoSpectra system also displayed potential as a cost-efficient option. Nonetheless, the restricted spectral coverage of the handheld NIRONE spectrometer resulted in reduced classification accuracy. Our discoveries highlight the capability of NIR spectroscopy, combined with robust data analysis techniques, for the swift and non-destructive classification of technical lignins, facilitating their improved utilization in sustainable fields. KW - Technical lignins KW - NIR spectroscopy KW - Classification KW - Machine-learning KW - PCA PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634518 DO - https://doi.org/10.1016/j.chemolab.2025.105467 SN - 0169-7439 VL - 264 SP - 1 EP - 10 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-63451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Processing of calcium sulfate in brines N2 - Calcium sulfate hemihydrate (CaSO4·0.5H2O), also known as bassanite or "plaster of Paris", serves as a precursor for the production of gypsum (dihydrate, CaSO4·2H2O), widely used in construction. Currently, ~200 MT of calcium sulfate are consumed annually. Bassanite is obtained from gypsum through a solid-state thermal treatment in kilns at temperature ranging from 150 °C to 200 °C. We introduce a more efficient and sustainable method (T < 100 ºC) that enables the direct, rapid, and reversible conversion of gypsum to bassanite using reusable high salinity aqueous solutions (brines with c[NaCl] > 4 M). These transformations are controlled by the properties of the solution, offering extensive opportunities for precise manipulation of crystal formation and recycling of gypsum waste. T2 - BESSY User Meeting 2024 CY - Berlin, Germany DA - 12.12.2024 KW - Gypsum PY - 2024 AN - OPUS4-62095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Towards sustainable solution-driven recycling of gypsum N2 - Calcium sulfate hemihydrate (CaSO4ᐧ0.5H2O), also known as bassanite, has been used as a precursor to produce gypsum (dihydrate, CaSO4ᐧ2H2O) for various construction and decorative purposes since prehistoric times. The main route to obtain hemihydrate is a thermal treatment of gypsum at temperatures typically between 150 °C and 200 °C to remove some of the structural water. In this contribution, we introduce (Fig. 1) a more efficient and sustainable method (T < 100 °C) that enables the direct, rapid, and reversibly conversion of gypsum to bassanite using reusable high salinity aqueous solutions (brineswith c[NaCl] > 4 M). The optimum conditions for the efficient production of bassanite in a short time (< 5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the typical behaviour of the bassanite phase in low salt environments. Traditionally, hemihydrate is obtained through a solid state thermal treatment because bassanite is considered to be metastable with respect to gypsum and anhydrite in aqueous solutions, and therefore gypsum-to-bassanite conversion should not occur in water. Its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures is inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline structure for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. T2 - RAL-SAS - UK Small angle scattering meeting 2025 CY - Oxford, United Kongdom DA - 16.06.2025 KW - Scattering KW - SAXS KW - Calcium sulfate KW - Gypsum PY - 2025 AN - OPUS4-64682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Stawski, Tomasz A1 - Miliute, Aiste T1 - Structural Refinement of ZrV₂O₇ with Negative Thermal Expansion Using Pair Distribution Function Analysis N2 - This repository contains Python scripts specifically developed for structural refinement of Zirconium Vanadate (ZrV₂O₇), a material known for its negative thermal expansion (NTE). The scripts implement Pair Distribution Function (PDF) analysis to refine crystal structures directly from experimental X-ray diffraction (XRD) data. The refinement workflow is built around the DiffPy-CMI library, enhanced with custom functionalities tailored for ZrV₂O₇ and similar oxide materials. KW - Zirconium vandate KW - Total scattering KW - Pair distribution function KW - Structure refinement PY - 2025 DO - https://doi.org/10.5281/zenodo.15395752 PB - Zenodo CY - Geneva AN - OPUS4-64750 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Towards sustainable solution-driven recycling of gypsum N2 - Gypsum (CaSO₄·2H₂O) is a crucial mineral across sectors such as construction, agriculture, and biomedicine. Despite its potentially full recyclability, a shortage looms due to limited mining in Europe and decreasing production of flue gas desulfurization (FGD) gypsum, a byproduct of coal power plants. With current EU consumption at 24 MT/a (17 MT mined, 7 MT FGD), a deficit of 10-35 MT/a is projected by the 2030s as CaSO₄ becomes a critical raw material [1]. Meanwhile, substantial CaSO₄ waste is produced in various industries (e.g., phosphogypsum, red gypsum), but its recycling remains limited (10% in Germany, 5% in the EU) due to contamination and separation challenges. This contribution introduces a sustainable, efficient wet-chemical method for converting gypsum to bassanite (CaSO₄·0.5H₂O), and thus recycling gypsum, under mild conditions (T < 100 °C) using reusable high-salinity aqueous solutions (brines with c[NaCl] > 4 M) [2]. The optimal conversion conditions (T > 80°C, c[NaCl] > 4 M) enable rapid (<5 min) and reversible transformation (Fig. 1). Upon cooling, gypsum re-forms, offering a temperature-dependent control over phase transition. Unlike conventional thermal dehydration (150-200 °C), this approach promotes the dissolution of gypsum, allowing contaminants to be separated via selective precipitation or adsorption. Additionally, the wet-chemical process facilitates the physical removal of impurities from gypsum matrices, making it advantageous for recycling gypsum waste from sources such as demolition or urban mining, where it is often mixed with other materials. Our approach presents a sustainable pathway for recovering high-purity bassanite from contaminated gypsum waste, aligning with EU goals for resource conservation and waste reduction. T2 - MaterialsWeek 2025 CY - Frankfurt am Main, Germany DA - 02.04.2025 KW - Gypsum KW - Calcium sulfate KW - Recycling PY - 2025 AN - OPUS4-64677 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Towards circular economy of gypsum N2 - Gypsum (CaSO₄·2H₂O) is a crucial mineral across sectors such as construction, agriculture, and biomedicine. Despite its potentially full recyclability, a shortage looms due to limited mining in Europe and decreasing production of flue gas desulfurization (FGD) gypsum, a byproduct of coal power plants. With current EU consumption at 24 MT/a (17 MT mined, 7 MT FGD), a deficit of 10-35 MT/a is projected by the 2030s as CaSO₄ becomes a critical raw material [1]. Meanwhile, substantial CaSO₄ waste is produced in various industries (e.g., phosphogypsum, red gypsum), but its recycling remains limited (10% in Germany, 5% in the EU) due to contamination and separation challenges. This talk introduces a sustainable, efficient wet-chemical method for converting gypsum to bassanite (CaSO₄·0.5H₂O), and thus recycling gypsum, under mild conditions (T < 100 °C) using reusable high-salinity aqueous solutions (brines with c[NaCl] > 4 M) [2]. The wet-chemical process facilitates the physical removal of impurities from gypsum matrices, making it advantageous for recycling gypsum waste from sources such as demolition or urban mining, where it is often mixed with other materials. The approach presents a sustainable pathway for recovering high-purity bassanite from contaminated gypsum waste, aligning with EU goals for resource conservation and waste reduction. T2 - GFZ Interface Geochemistry Seminars Spring 2025 CY - Potsdam, Germany DA - 06.05.2025 KW - Calcium sulfate KW - Circular economy KW - Gypsum PY - 2025 AN - OPUS4-64681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Historical Plaster Formulations and Their Influence on Crystallographic Microstructure N2 - Historical plaster formulations offer valuable insights into advanced engineering in pre-modern cultures. This study examines two such gypsum-based recipes: Gach-e Koshteh from 14th-century Iran and Gesso Sottile from 15th-century Italy, both of which have unique characteristics and were essential for artistic and architectural decoration. By replicating these recipes in a laboratory setting, we demonstrate how traditional masters manipulated gypsum microstructure without additives to optimize the surface and mechanical properties of plaster for specific functional and artistic purposes. The Koshteh recipe involves intensive kneading during plaster hydration, which retards setting and produces a platelet-like crystal morphology with alignment of the {010} faces, resulting in a hydrophilic surface ideal for water-based wall paintings. Sottile, in contrast, relies on slow recrystallization in excess water, generating loosely packed, needle-like crystals with reduced wettability—suitable for oil-based painting and gilding. Using wide-angle X-ray scattering (WAXS), atomic force microscopy (AFM), and scanning electron microscopy (SEM), we reveal that the Koshteh recipe yields a denser, better-packed plaster with enhanced wettability, while the Sottile recipe forms larger, more loosely arranged crystals and a more hydrophobic surface. These findings underscore the ingenuity of historical materials engineering and offer valuable insights for modern conservation and sustainable restoration practices. T2 - Geo4Göttingen 2025 CY - Göttingen, Germany DA - 14.09.2025 KW - Plaster KW - Gypsum KW - Stucco KW - Cultural heritage PY - 2025 DO - https://doi.org/10.48380/4e5z-av91 AN - OPUS4-64685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Towards solution-driven recycling of gypsum N2 - Gypsum (CaSO₄·2H₂O) is a crucial mineral across sectors such as construction, agriculture, and biomedicine. Despite its potentially full recyclability, a shortage looms due to limited mining in Europe and decreasing production of flue gas desulfurization (FGD) gypsum, a byproduct of coal power plants. With current EU consumption at 24 MT/a (17 MT mined, 7 MT FGD), a deficit of 10-35 MT/a is projected by the 2030s as CaSO₄ becomes a critical raw material [1]. Meanwhile, substantial CaSO₄ waste is produced in various industries (e.g., phosphogypsum, red gypsum), but its recycling remains limited (10% in Germany, 5% in the EU) due to contamination and separation challenges. This contribution introduces a sustainable, efficient wet-chemical method for converting gypsum to bassanite (CaSO₄·0.5H₂O), and thus recycling gypsum, under mild conditions (T < 100 °C) using reusable high-salinity aqueous solutions (brines with c[NaCl] > 4 M) [2]. The optimal conversion conditions (T > 80°C, c[NaCl] > 4 M) enable rapid (<5 min) and reversible transformation. Upon cooling, gypsum re-forms, offering a temperature-dependent control over phase transition. Unlike conventional thermal dehydration (150-200 °C), this approach promotes the dissolution of gypsum, allowing contaminants to be separated via selective precipitation or adsorption. Additionally, the wet-chemical process facilitates the physical removal of impurities from gypsum matrices, making it advantageous for recycling gypsum waste from sources such as demolition or urban mining, where it is often mixed with other materials. T2 - Geo4Göttingen 2025 CY - Göttingen, Germany DA - 14.09.2025 KW - Calcium sulfate KW - Gypsum PY - 2025 DO - https://doi.org/10.48380/fhck-bv98 AN - OPUS4-64684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eiby, Simon H. J. A1 - Tobler, Dominique J. A1 - Voigt, Laura A1 - van Genuchten, Case M. A1 - Bruns, Stefan A1 - Jensen, Kirsten M. Ø. A1 - Stawski, Tomasz M. A1 - Wirth, Richard A1 - Benning, Liane G. A1 - Stipp, S. L. S. A1 - Dideriksen, Knud T1 - Topotactic Redox-Catalyzed Transformation of Iron Oxides N2 - Fe oxides frequently exist in systems containing both Fe(II) and Fe(III), where their reactivity is enhanced and where interfacial electron transfer from Fe(II) adsorbed to the solids causes the transformation of metastable Fe oxides. Here, we contribute to the understanding of such a transformation using green rust sulfate (GR) synthesized in the presence or absence of Si or Al as the starting material. X-ray diffraction (XRD) and pair distribution function (PDF) analyses showed that (i) rapid oxidation by Cr(VI) caused transformation to Fe oxyhydroxide with short-range ordering, with a pattern identical to that reported for the oxidation of isolated GR hydroxide sheets (i.e., a trilayer of Fe with both edge- and corner-sharing polyhedra) and (ii) goethite formed at the expense of the short-range-ordered Fe oxyhydroxide when residual Fe(II) was present, particularly when Si was absent. This is consistent with the Fe(II)-catalyzed transformation of the short-range-ordered Fe oxyhydroxide. High-resolution transmission electron microscopy (TEM) showed that the two oxidation products coexisted within individual particles and that particle shape and the crystallographic orientation of both products were inherited from the original GR crystals, i.e., they had formed through topotactic transformation. We interpret that the structural reorganization to goethite occurred either in response to distortions caused by polaron movement or as a result of electron transfer reactions occurring at internal surfaces. Once nucleated, goethite growth can be sustained by dissolution–reprecipitation. KW - Iron oxide KW - Electron microscopy KW - Pair distribution funvtion KW - Total scattering PY - 2025 DO - https://doi.org/10.1021/acsearthspacechem.5c00220 SN - 2472-3452 SP - 1 EP - 12 PB - American Chemical Society (ACS) AN - OPUS4-64924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wolf, Jako A1 - Stawski, Tomasz A1 - Smales, Glen Jacob A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - SI Files for "Towards automation of the polyol process for the synthesis of silver nanoparticles" N2 - The graphml file: reaction_graph_AgNP.graphml is included. It contains topological information (Fig. 1 in the main text) about the reaction setup and metadata with reaction condtions. It used by the Python API used to control the Chemputer. SAXS reports. The complete report sheets generated by McSAS are included. They contain extended information characterising the size distributions and the fitting parameters. NP3_I: saxs_report_NP3_I.pdf NP3_II: saxs_report_NP3_II.pdf NP3_III: saxs_report_NP3_III.pdf NP3_IV: saxs_report_NP3_IV.pdf NP5_I: saxs_report_NP5_I.pdf NP5_II: saxs_report_NP5_II.pdf NP5_III: saxs_report_NP5_III.pdf KW - Automated synthesis KW - Silver KW - Nanoparticles PY - 2022 DO - https://doi.org/10.5281/zenodo.5910614 PB - Zenodo CY - Geneva AN - OPUS4-55197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - Karafiludis, Stephanos A1 - Standl, Jakob A1 - Ryll, Tom A1 - Schwab, Alexander A1 - Prinz, Carsten A1 - Wolf, Jakob A1 - Kruschwitz, Sabine A1 - Emmerling, Franziska A1 - Völker, Christoph T1 - High-Entropy Metal Phosphate Synthesis: Advancements through Automation and Sequential Learning Optimization N2 - To accelerate high-entropy metal phosphate (HEMP) discovery, we employed a Random Forest regression model within a SLAMD framework. Trained on limited initial data, the model efficiently explored the vast compositional space to predict a novel five-metal phosphate, which was then successfully synthesized and validated experimentally. T2 - AI4 Materials Science and Testing 2025 CY - Berlin, Germany DA - 06.11.2025 KW - Metal phosphates KW - High-entropy KW - Sequential learning PY - 2025 AN - OPUS4-64686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Yusenko, Kirill A1 - Stawski, Tomasz A1 - Kulow, Anicó A1 - Cakir, Cafer Tufan A1 - Röder, Bettina A1 - Naese, Christoph A1 - Britzke, Ralf A1 - Sintschuk, Michael A1 - Emmerling, Franziska T1 - BAMline - A real-life sample materials research beamline N2 - With increasing demand and environmental concerns, researchers are exploring new materials that can perform as well or better than traditional materials while reducing environmental impact. The BAMline, a real-life sample materials research beamline, provides unique insights into materials’ electronic and chemical structure at different time and length scales. The beamline specializes in x-ray absorption spectroscopy, x-ray fluorescence spectroscopy, and tomography experiments. This enables real-time optimization of material properties and performance for various applications, such as energy transfer, energy storage, catalysis, and corrosion resistance. This paper gives an overview of the analytical methods and sample environments of the BAMline, which cover non-destructive testing experiments in materials science, chemistry, biology, medicine, and cultural heritage. We also present our own synthesis methods, processes, and equipment developed specifically for the BAMline, and we give examples of synthesized materials and their potential applications. Finally, this article discusses the future perspectives of the BAMline and its potential for further advances in sustainable materials research. KW - Extended X-ray absorption fine structure KW - Energy storage KW - Environmental impacts KW - Nondestructive testing techniques KW - X-ray fluorescence spectroscopy KW - Corrosion KW - Near edge X-ray absorption fine structure spectroscopy KW - X-ray absorption spectroscopy PY - 2023 DO - https://doi.org/10.1063/5.0157194 VL - 158 IS - 24 SP - 1 EP - 22 PB - AIP Publishing AN - OPUS4-57824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz T1 - Solution-driven processing of calcium sulfate: the mechanism of the reversible transformation of gypsum to bassanite in brines N2 - Calcium sulfate hemihydrate (CaSO4ᐧ0.5H2O), also known as bassanite, has been used as a precursor to produce gypsum (dihydrate, CaSO4ᐧ2H2O) for various construction and decorative purposes since prehistoric times. The main route to obtain hemihydrate is a thermal treatment of gypsum at temperatures typically between 150 °C and 200 °C to remove some of the structural water. In this contribution, we introduce (Fig. 1) a more efficient and sustainable method (T < 100 °C) that enables the direct, rapid, and reversibly conversion of gypsum to bassanite using reusable high salinity aqueous solutions (brines with c[NaCl] > 4 M). The optimum conditions for the efficientproduction of bassanite in a short time (< 5 min) involve the use of brines with c(NaCl) > 4 M and maintaining a temperature, T > 80 °C. When the solution containing bassanite crystals is cooled down to around room temperature, eventually gypsum is formed. When the temperature is raised again to T > 80 °C, bassanite is rapidly re-precipitated. This contrasts with the typical behaviour of the bassanite phase in low salt environments. Traditionally, hemihydrate is obtained through a solid state thermal treatment because bassanite is considered to be metastable with respect to gypsum and anhydrite in aqueous solutions, and therefore gypsum-to-bassanite conversion should not occur in water. Its very occurrence actually contradicts numerical thermodynamic predictions regarding solubility of calcium sulfate phases. By following the evolution of crystalline phases with in situ and time-resolved X-ray diffraction/scattering and Raman spectroscopy, we demonstrated that the phase stability in brines at elevated temperatures is inaccurately represented in the thermodynamic databases. Most notably for c(NaCl) > 4 M, and T > 80 °C gypsum becomes readily more soluble than bassanite, which induces the direct precipitation of the latter from gypsum. The fact that these transformations are controlled by the solution provides extensive opportunities for precise manipulation of crystal formation. Our experiments confirmed that bassanite remained the sole crystalline structure for many hours before reverting into gypsum. This property is extremely advantageous for practical processing and efficient crystal extraction in industrial scenarios. T2 - Granada Münster Discussion Meeting GMDM 10 CY - Münster, Germany DA - 29.11.2023 KW - Gypsum KW - Bassanite KW - Calcium sulfate KW - Recycling KW - Scattering PY - 2024 AN - OPUS4-59162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -