TY - CONF A1 - Prager, Jens A1 - Heide, M. A1 - Homann, Patrick Tobias A1 - Grzeszkowski, M. A1 - Gaal, Mate A1 - Dohse, Elmar T1 - Einseitig-berührungslose Ultraschallprüfung von Klebeverbindungen N2 - Durch den Einsatz von faserverstärkten Kunststoffen und Multi-Material-Konstruktionen zur Gewichtsreduzierung erlangen Klebeverbindungen immer stärkere Bedeutung. Die Prüfung dieser Fügeverbindungen stellt neue Anforderungen an die zerstörungsfreie Prüfung. Hinzu kommt, dass die Zugänglichkeit häufig eingeschränkt und die Verwendung flüssiger Koppelmittel aufgrund konstruktiver oder fertigungstechnischer Gegebenheiten ausgeschlossen ist. Unter Berücksichtigung dieser Beschränkungen wurde ein Prüfverfahren entwickelt, das eine luftgekoppelte Anregung geführter Ultraschallwellen mit einer laserbasierten Detektion kombiniert. Nachdem das Prüfverfahren zunächst mit einer einfachen Signalauswertung im Zeitbereich getestet wurde, konnte in nachfolgenden Untersuchungen die örtliche Auflösung durch die Implementierung von Filteralgorithmen im Frequenz-Wellenzahl-Bereich und zusätzlich durch direktionale Filter erhöht werden. Das resultierende bildgebende Prüfverfahren wurde an realitätsnahen Klebeproben mit künstlichen Fehlern getestet. Die Zuverlässigkeit und Ortsauflösung des Verfahrens wurde im Vergleich mit herkömmlichen Prüfverfahren validiert. Mithilfe des Verfahrens können Poren, Einschlüsse und Bereiche mit ungenügender Verklebung detektiert werden. T2 - DACH-Jahrestagung 2015 CY - Salzburg, Austria DA - 11.05.2015 KW - Strukturüberwachung KW - Ultraschallprüfung KW - Zerstörungsfreie Prüfung PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-331944 SN - 978-3-940283-68-9 IS - DGZfP BB 152 SP - Mo.2.B.4, 1 EP - 7 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) AN - OPUS4-33194 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stajanca, Pavol A1 - Baensch, Franziska A1 - Baer, Wolfram A1 - Chruscicki, Sebastian A1 - Homann, Tobias A1 - Seifert, Stefan A1 - Schmidt, Dirk A1 - Weltschev, Margit A1 - Wossidlo, Peter A1 - Habib, Abdel Karim T1 - Monitoring of pipes by distributed acoustic fibre optic sensors – A large-scale test on a pipeline under realistic operation condition N2 - The monitoring of oil and gas pipelines by means of distributed fibre optic sensors is becoming common. The most recent development in the field of fibre optic sensing is the distributed acoustic sensing (DAS), which allows to detect and to localize third party threats to pipelines. For this purpose, fibre optic telecommunication cables located close to the pipelines are usually used. However, DAS carries a far greater potential for continuous condition monitoring of pipelines. The interdisciplinary research project AGIFAMOR (Ageing Infrastructures – Fibre Optic Monitoring of Pipes) at BAM investigates a new technical approach to extend the application field of DAS towards the detection and localization of acoustic signals that indicate critical alterations and certain damage scenarios originated from within the pipeline or the pipe wall. Therefore, the optical fibre sensors are applied onto the pipe itself and the application procedure towards an optimal acoustic signal transduction is optimized. A number of laboratory scale experiments were performed focusing on the signal transmission of acoustic signals as well as the detection of damages in the pipe wall by means of DAS. Furthermore, real-scale tests on a pipeline DN100 of 38m length have been carried out at the BAM test site for technical safety (BAM-TTS) to study the detection and localization of leaks and of changing flow profiles due to corrosion or sedimentation processes. T2 - 13th Pipeline Technology Conference CY - Berlin, Germany DA - 12.03.2018 KW - Pipeline monitoring KW - Distributed acoustic sensing KW - Fiber optic sensing PY - 2018 SN - 2198-428X SP - Poster session, paper 9, 1 EP - 8 PB - EITEP (Euro Institute for Information and Technology Transfer in Environmental Protection) CY - Hannover AN - OPUS4-44519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baensch, Franziska A1 - Baer, Wolfram A1 - Chruscicki, Sebastian A1 - Homann, Tobias A1 - Prager, Jens A1 - Schmidt, Dirk A1 - Stajanca, Pavol A1 - Weltschev, Margit A1 - Wossidlo, Peter A1 - Habib, Abdel Karim T1 - AGIFAMOR: Anwendung der verteilten akustischen und faseroptischen Sensorik zur kontinuierlichen Überwachung von Rohrleitungen - Teil 2: Technische Hintergründe - Schadensursachen und Prüfeinrichtungen N2 - Schäden an Rohrleitungen können zu hohen Umweltbelastungen und wirtschaftlichen Schäden führen. Um die dauerhafte Verfügbarkeit der Infrastruktur zu gewährleisten, wird im Rahmen des Projekts AGIFAMOR an der Bundesanstalt für Materialforschung und -prüfung (BAM) erprobt, inwiefern das Verfahren der verteilten akustischen faseroptischen Sensorik (Distributed acoustic sensing – DAS) zur kontinuierlichen Überwachung von Rohrleitungen eingesetzt werden kann. Neben der DAS werden erprobte Verfahren der zerstörungsfreien Prüfung wie Schallemissionsanalyse (SEA) und Beschleunigungssensoren eingesetzt. An dieser Stelle soll detailliert auf die Hauptschadensursachen an Rohrleitungen, den Versuchsstand zur mechanischen Belastung von Rohren sowie die Möglichkeiten zu Untersuchungen im Realmaßstab eingegangen werden. KW - Schadensursachen an Rohrleitungen KW - Monitoring von Rohrleitungen KW - Verteilte Faseroptische Sensorik KW - Rohrbiegeprüfstand KW - Leckage PY - 2018 SN - 2191-0073 VL - 8 IS - 3 SP - 24 EP - 29 PB - Springer VDI-Verlag GmbH & Co. KG CY - Düsseldorf AN - OPUS4-44507 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Homann, Tobias A1 - Barth, Enrico A1 - Mitzscherling, Steffen A1 - Prager, Jens T1 - Mehrdimensionale Bestimmung der Schallschnelle auf Festkörperoberflächen mittels Einpunkt-Laservibrometrie im MHz-Bereich N2 - Die zerstörungsfreie Prüfung von austenitischen Mischnähten, wie sie beispielsweise im Primärkreislauf von Kernkraftwerken vorkommen, stellt besondere Anforderungen an die eingesetzte Ultraschallprüfung. Voraussetzung für die positions- und größenrichtige Darstellung von Bauteilfehlern, insbesondere bei bildgebenden Ultraschallverfahren, ist die genaue Kenntnis der Materialparameter auf dem gesamten Schalllaufweg vom Sender zum Empfänger. Im Rahmen eines Forschungsprojekts entwickeln wir ein zerstörungsfreies, inverses Verfahren, das die Schweißnahtparameter entsprechend des Ogilvy-Modells aus der Schallschnelleverteilung bestimmt, die eine Longitudinalwelle an der Oberfläche erzeugt, nachdem sie durch die Schweißnaht gelaufen ist. T2 - Workshop des Fachausschusses Ultraschall der DEGA e.V „Schallfeldbasierte Messverfahren – vom Transducer bis zur praktischen Anwendung“ CY - Kloster Drübeck, Germany DA - 10.07.2017 KW - Austenit KW - Ultraschall KW - Zerstörungsfreie Prüfung ZfP KW - Schweißnaht KW - Mischnaht PY - 2017 AN - OPUS4-44144 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jüngert, A. A1 - Dugan, S. A1 - Homann, Tobias A1 - Mitzscherling, Steffen A1 - Prager, Jens A1 - Pudovikov, S. A1 - Schwender, T. T1 - Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities N2 - Austenitic stainless steel welds as well as dissimilar metal welds with nickel alloy filler material, used in safety relevant parts of nuclear power plants, still challenge the ultrasonic inspection. The weld material forms large oriented grains which lead on the one hand to high sound scattering and on the other hand – to inhomogeneity and to the acoustic anisotropy of the weld structure. The ultrasonic wave fronts propagate not linearly, as in ferritic weld joints, but along the curves, which depend on the specific grain structure of the weld. Due the influence of these phenomena, it is difficult to analyze the inspection results and to classify the ultrasonic indications, which could be both from the weld geometry and from the material defects. A correct flaw sizing is not possible. In an ongoing research project, different techniques to improve the reliability of ultrasonic testing at these kinds of welds are investigated. In a first step (in the previous research project) two ultrasonic inspection techniques were developed and validated on plane test specimens with artificial and realistic flaws. In the ongoing project, these techniques are applied to circumferential pipe welds with longitudinal and transverse flaws. The technique developed at the Federal Institute for Materials Research and Testing (BAM) in Germany uses a combination of ray tracing and synthetic aperture focusing technique (SAFT). To investigate the unknown grain structure, the velocity distribution of weld-transmitting ultrasound waves is measured and used to model the weld by ray tracing. The second technique, developed at the Fraunhofer Institute for Nondestructive Testing (IZFP) in Germany, uses Sampling Phased Array (Full Matrix Capture) combined with the reverse phase matching (RPM) and the gradient elastic constant descent algorithm (GECDM). This inspection method is able to estimate the elastic constants of the columnar grains in the weld and offers an improvement of the reliability of ultrasonic testing through the correction of the sound field distortion. The unknown inhomogeneity and anisotropy are investigated using a reference indication and the special optimization algorithm. Both reconstruction techniques give quantitative inspection results and allow the defect sizing. They have been compared to conventional ultrasonic testing with techniques, which are state of the art for components in nuclear power plants. The improvement will be quantified by the comparison of the probability of detection (POD) of each technique. T2 - 44th Annual Review of Progress in Quantitative Nondestructive Evaluation CY - Utah Valley Convention Center, Provo, Utah, USA DA - 15.07.2017 KW - Austenitic stainless steel KW - Nuclear power plants KW - Dissimilar welds KW - Nondestructive testing KW - Ultrasonic testing PY - 2018 SN - 978-0-7354-1644-4 SN - 0094-243X VL - 1949 SP - UNSP 110002, 1 EP - 9 AN - OPUS4-44148 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hussels, Maria-Teresa A1 - Chruscicki, Sebastian A1 - Arndt, Detlef A1 - Scheider, Swen A1 - Prager, Jens A1 - Homann, Tobias A1 - Habib, Abdel Karim T1 - Localization of transient events threatening pipeline integrity by fiber-optic distributed acoustic sensing N2 - Pipe integrity is a central concern regarding technical safety, availability, and environmental compliance of industrial plants and pipelines. A condition monitoring system that detects and localizes threats in pipes prior to occurrence of actual structural failure, e.g., leakages, especially needs to target transient events such as impacts on the pipe wall or pressure waves travelling through the medium. In the present work, it is shown that fiber-optic distributed acoustic sensing (DAS) in conjunction with a suitable application geometry of the optical fiber sensor allows to track propagating acoustic waves in the pipeline wall on a fast time-scale. Therefore, short impacts on the pipe may be localized with high fidelity. Moreover, different acoustic modes are identified, and their respective group velocities are in good agreement with theoretical predications. In another set of experiments modeling realistic damage scenarios, we demonstrate that pressure waves following explosions of different gas mixtures in pipes can be observed. Velocities are verified by local piezoelectric pressure transducers. Due to the fully distributed nature of the fiber-optic sensing system, it is possible to record accelerated motions in detail. Therefore, in addition to detection and localization of threatening events for infrastructure monitoring, DAS may provide a powerful tool to study the development of gas explosions in pipes, e.g., investigation of deflagration-to-detonation-transitions (DDT). KW - Distributed acoustic sensing (DAS) KW - Distributed vibrations sensing (DVS) KW - Fiber-optic sensing KW - Condition monitoring KW - Pipeline integrity KW - Gas explosion PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-488555 DO - https://doi.org/10.3390/s19153322 SN - 1424-8220 VL - 19 IS - 15 SP - 3322, 1 EP - 20 PB - MDPI CY - Basel, CH AN - OPUS4-48855 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska A1 - Hussels, Maria-Teresa A1 - Chruscicki, Sebastian A1 - Baer, Wolfram A1 - Wossidlo, Peter A1 - Homann, Tobias A1 - Prager, Jens A1 - Schmidt, Dirk A1 - Weltschev, Margit A1 - Habib, Abdel Karim T1 - BAM-Projekt AGIFAMOR – Zustandsüberwachung von Rohrleitungen N2 - Rohrleitungssysteme sind aufgrund ihrer Funktion und Ausdehnung für den Betrieb, die Verfügbarkeit und die Sicherheit von Industrieanlagen von besonderer Bedeutung. Die bisher in definierten Intervallen durchgeführten, wiederkehrenden Prüfungen zur Sicherstellung leckagefreier Rohrleitungen sind kostenintensiv und mit einem erhöhten Aufwand verbunden. Mit dem interdisziplinären Forschungsprojekt AGIFAMOR (Ageing Infrastructures – Akustisches Monitoring von Rohrleitungen) arbeitet die BAM an der Entwicklung und Erprobung einer örtlich und zeitlich kontinuierlichen Zustandsüberwachung von Rohrleitungen basierend auf einem faseroptischen akustischen Messsystem, welches einen vergleichsweise geringen Installationsaufwand der Sensoren erfordert. Mit diesem Verfahren sollen vor allem betriebsbedingte Schädigungen infolge von Korrosion sowie daraus entstehende Pittings oder Risse erkannt und damit Leckagen verhindert werden. Im Rahmen einer Machbarkeitsstudie zum Teilaspekt „Detektion von Risswachstum“ wurde ein 2,5 m langes, definiert vorgekerbtes Stahlrohr mit der faseroptischen Sensorik (FOS) ausgestattet und quasistatisch unter 4-Punkt-Biegung belastet. Mit fortschreitender Belastung wächst, ausgehend vom vorhandenen Außenumfangskerb, ein Riss im Stahlrohr bis zum Erreichen der Leckage – in der Praxis ein gefährliches Schadensszenario. Parallel zur FOS erfolgten Messungen mit Schallemissionssensoren, Beschleunigungssensoren und Potentialsonden, deren Ergebnisse die Interpretation der FOS-Messergebnisse unterstützen sollen. T2 - 21. Kolloquium Schallemission CY - Fulda, Germany DA - 09.03.2017 KW - Beschleunigungssensoren KW - Faseroptische Sensorik KW - Schallemission KW - Monitoring KW - Rohrleitung PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-401811 SN - 978-3-940283-82-5 VL - DGZfP-BB 159 SP - Vortrag 17, 1 EP - 8 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-40181 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baensch, Franziska A1 - Hussels, Maria-Teresa A1 - Chruscicki, Sebastian A1 - Baer, Wolfram A1 - Wossidlo, Peter A1 - Homann, Tobias A1 - Prager, Jens A1 - Schmidt, Dirk A1 - Weltschev, Margit A1 - Habib, Abdel Karim T1 - AGIFAMOR: Anwendung der verteilten akustischen und faseroptischen Sensorik zur kontinuierlichen Überwachung von Rohrleitungen - Teil 1: Projektvorstellung und erste Vorversuche N2 - In der Prozessindustrie werden häufig gefährliche Stoffe eingesetzt, so dass auch kleinste Leckagen der medienführenden Anlagenteile zu Gefährdungen der Arbeitnehmer sowie zur Belastung der Umwelt führen können. Für die Gewährleistung einer dauerhaften Verfügbarkeit der Infrastruktur ist die frühzeitige Erkennung und Ortung von potentiell gefährlichen Veränderungen an den Wandungen von Rohrleitungen und Behältern (in Form von Rissen, Pittings und Ablagerungen) erforderlich. Am Beispiel von Rohrleitungen, sollen im Rahmen des Projekts AGIFAMOR an der Bundesanstalt für Materialforschung und -prüfung (BAM), im Sinne einer Machbarkeitsstudie die Verfahren der verteilten akustischen und faseroptischen Sensorik zur kontinuierlichen Überwachung und Detektion potentiell gefährlicher Veränderungen in Industrieanlagen erprobt und qualifiziert werden. Dabei sollen die Applikation der optischen Sensorfasern hinsichtlich der Signalübertragung auf den Sensor optimiert und die Erkennung der für dieses Anwendungsgebiet relevanten Schallsignaturen entwickelt werden. Mithilfe eines solchen Messsystems können mit geringem Aufwand ausgedehnte Strukturen, auch unter erschwerten Bedingungen (z.B. hohe Temperatur, Einfluss von Chemikalien) kontinuierlich überwacht werden. KW - Beschleunigungssensoren KW - Faseroptische Sensorik KW - Schallemission KW - Monitoring KW - Rohrleitung PY - 2017 SN - 2191-0073 VL - 7 IS - 3 SP - 10 EP - 16 PB - Springer VDI-Verlag GmbH & Co. KG CY - Düsseldorf AN - OPUS4-40183 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Barth, Enrico A1 - Homann, Tobias A1 - Prager, Jens T1 - Einpunkt-Laser-Doppler-Vibrometer für die mehrdimensionale Analyse des Schwingungsverhaltens auf Festkörperoberflächen im MHz-Bereich N2 - Zur messtechnischen Analyse des Schwingungsverhaltens von Festkörpern kann die Bewegung der Oberfläche mit einem Laservibrometer vermessen werden. Für bestimmte Anwendungen, beispielsweise bei der Charakterisierung von anisotropen Werkstoffeigenschaften, ist eine mehrdimensionale Bestimmung der Schwingungskomponenten notwendig. Zur Umsetzung des Messprinzips wird ein Ansatz mit einem Einpunkt-Vibrometer verfolgt, welcher sequenziell die Messpunkte aus mehreren Winkeln analysiert und unter Verwendung der Winkelbeziehungen die Normal- und In-Plane-Komponenten der Schwingung berechnet. Die exakte Positionierung des Lasers aus verschiedenen Winkeln stellt durch die hohen Frequenzen und die damit verbundenen Wellenlängen im mm-Bereich die wesentliche Herausforderung bei der Umsetzung des Messverfahrens dar. Bereits kleine Abweichungen führen zu einem hohen Phasenversatz und somit zu nicht tolerierbaren Messfehlern. Unter Berücksichtigung schwer zu ermittelnder Geometrieinformationen wurde ein Verfahren entwickelt, mit dem eine ausreichende Positionierungsgenauigkeit gewährleistet werden kann. Im Vortrag werden zunächst die Fehlereinflüsse analysiert und die Umsetzung des Messverfahrens detailliert vorgestellt. Es wird gezeigt, dass die Schwingungskomponenten bis zu einer Frequenz von 1 MHz mit ausreichender Genauigkeit bestimmt werden können. Zusätzlich wird der Einfluss verschiedener Möglichkeiten zur Erhöhung der Reflektivität der Oberfläche auf die Ergebnisse untersucht. T2 - 43. Jahrestagung für Akustik (DAGA) CY - Kiel, Germany DA - 06.03.2017 KW - ZFP Schweißnaht Ultraschall PY - 2017 SN - 978-3-939296-12-6 SP - 448 EP - 451 AN - OPUS4-39421 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mitzscherling, Steffen A1 - Barth, Enrico A1 - Götschel, S. A1 - Homann, Tobias A1 - Prager, Jens A1 - Weiser, M. T1 - Verbesserung und Qualifizierung der Ultraschallprüfung von Mischnähten im Primärkreis von KKW N2 - Die im Primärkreislauf von Kernkraftwerken anzutreffenden austenitischen Schweiß- und Mischnähte sind nicht nur extrem sicherheitsrelevant, sondern stellen auch sehr hohe Anforderungen an die Materialprüfung. Neben der eingeschränkten Zugänglichkeit ist das makroskopische Gefüge der Schweißnaht für die Prüfung mit Ultraschall von höchster Bedeutung. Um Materialfehler zuverlässig in Position und Größe bestimmen zu können, müssen die Kornorientierungen und die elastischen Konstanten des anisotropen Schweißnahtgefüges bekannt sein. Für die bildgebende Darstellung möglicher Materialfehler kommen folgende Arbeitsschritte zum Einsatz: Zunächst wird die Schweißnaht durchschallt, um mit einem inversen Verfahren wichtige Schweißnahtparameter wie beispielsweise die Kornorientierung bestimmen zu können. Auf der Basis dieser Parameter werden im nächsten Schritt die Schallwege mittels Raytracing (RT) simuliert. Zuletzt werden dieser RT-Simulation die Messdaten (A-Scans) von verschiedenen Sender- und Empfängerpositionen zugeordnet und nach der SAFT-Methode (Synthetic Aperature Focusing Technique) zeitaufgelöst überlagert. Die Kombination aus inversem Verfahren, RT und SAFT gewährleistet auch in anisotropen Werkstoffen eine ortsrichtige Visualisierung der Fehler. Wir erläutern diese drei Verfahren und stellen die Prüfanordnung von Prüfkörpern mit künstlichen Testfehlern vor. Messdaten sowie deren Auswertung werden mit den Ergebnissen einer CIVA-Simulation verglichen. T2 - DGZfP-Jahrestagung 2017 CY - Koblenz, Germany DA - 22.05.2017 KW - Zerstörungsfreie Prüfung KW - Ultraschall KW - SAFT KW - Schweißnaht KW - Austenit PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-404329 SN - 978-3-940283-85-6 VL - DGZfP BB 162 SP - P16, 1 EP - 8 AN - OPUS4-40432 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -