TY - JOUR A1 - Titscher, Thomas A1 - van Dijk, T. A1 - Kadoke, Daniel A1 - Robens-Radermacher, Annika A1 - Herrmann, Ralf A1 - Unger, Jörg F. T1 - Bayesian model calibration and damage detection for a digital twin of a bridge demonstrator N2 - Using digital twins for decision making is a very promising concept which combines simulation models with corresponding experimental sensor data in order to support maintenance decisions or to investigate the reliability. The quality of the prognosis strongly depends on both the data quality and the quality of the digital twin. The latter comprises both the modeling assumptions as well as the correct parameters of these models. This article discusses the challenges when applying this concept to realmeasurement data for a demonstrator bridge in the lab, including the data management, the iterative development of the simulation model as well as the identification/updating procedure using Bayesian inference with a potentially large number of parameters. The investigated scenarios include both the iterative identification of the structural model parameters as well as scenarios related to a damage identification. In addition, the article aims at providing all models and data in a reproducibleway such that other researcher can use this setup to validate their methodologies. KW - Damage detection KW - Finite element analysis KW - Load identification KW - Model updating KW - Estimation KW - System identification KW - Variational Bayesian statistics PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-574496 SN - 2577-8196 SP - 1 EP - 27 PB - Wiley CY - Hoboken, NJ AN - OPUS4-57449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Titscher, Thomas A1 - Robens-Radermacher, Annika A1 - Unger, Jörg F. T1 - Model calibration and damage detection for a digital twin N2 - Numerical models are an essential tool in predicting and monitoring the behavior of civil structures. Inferring the model parameters is a challenging tasks as they are often measured indirectly and are affected by uncertainties. Digital twins couple those models with real-world data and can introduce additional, systematic sensor uncertainties related to the sensor calibration, i.e. uncertain offsets and calibration factors. In this work, the challenges of data processing, parameter identification, model selection and damage detection are explored using a lab-scale cable stayed bridge demonstrator. By combining force measurements in the cables with displacement measurements from both laser and stereo-photogrammetry systems, the elastic parameters of a three-dimensional finite element beam model are inferred. Depending on the number of sensors and the number of datasets used, parametrizing the sensor offsets and factors, leads to model with over 100 parameters. With a real-time solution of the problem in mind, a highly efficient analytical variational Bayesian approach is used to solve it within seconds. An analysis of the required assumptions and limitations of the approach, especially w.r.t. to the computed evidence, is provided by a comparison with dynamic nested sampling in a simplified problem. Finally, by inferring the value of additional damage parameters along the bridge, the method is successfully used to detect the location of an artificially introduced weak spot in the demonstrator bridge. T2 - ECCOMAS 2022 CY - Oslo, Norway DA - 05.06.2022 KW - Bayesian identification KW - Digital twin KW - Variational Bayesian KW - Damage detection PY - 2022 AN - OPUS4-55083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -