TY - JOUR A1 - Titscher, Thomas A1 - van Dijk, T. A1 - Kadoke, Daniel A1 - Robens-Radermacher, Annika A1 - Herrmann, Ralf A1 - Unger, Jörg F. T1 - Bayesian model calibration and damage detection for a digital twin of a bridge demonstrator JF - Engineering reports N2 - Using digital twins for decision making is a very promising concept which combines simulation models with corresponding experimental sensor data in order to support maintenance decisions or to investigate the reliability. The quality of the prognosis strongly depends on both the data quality and the quality of the digital twin. The latter comprises both the modeling assumptions as well as the correct parameters of these models. This article discusses the challenges when applying this concept to realmeasurement data for a demonstrator bridge in the lab, including the data management, the iterative development of the simulation model as well as the identification/updating procedure using Bayesian inference with a potentially large number of parameters. The investigated scenarios include both the iterative identification of the structural model parameters as well as scenarios related to a damage identification. In addition, the article aims at providing all models and data in a reproducibleway such that other researcher can use this setup to validate their methodologies. KW - Damage detection KW - Finite element analysis KW - Load identification KW - Model updating KW - Estimation KW - System identification KW - Variational Bayesian statistics PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574496 DO - https://doi.org/10.1002/eng2.12669 SN - 2577-8196 SP - 1 EP - 27 PB - Wiley CY - Hoboken, NJ AN - OPUS4-57449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jafari, Abbas A1 - Titscher, Thomas A1 - Chatzi, E. A1 - Unger, Jörg F. T1 - Variational Bayesian inference of damage in concrete material using spatially-dense data N2 - Numerical simulators, such as finite element models, have become increasingly capable of predicting the behaviour of structures and components owing to more sophisticated underlying mathematical models and advanced computing power. A common challenge lies, however, in calibrating these models in terms of their unknown/uncertain parameters. When measurements exist, this can be achieved by comparing the model response against measured data. Besides uncertain model parameters, phenomena like damage can give rise to further uncertainties; in particular, quasi-brittle materials, like concrete, experience damage in a heterogeneous manner due to various imperfections, e.g. in geometry and boundary conditions. This hardens an accurate prediction of the damaged behaviour of real structures that comprise such materials. In this study, which draws from a data-driven approach, we use the force-version of the finite element model updating method (FEMU-F) to incorporate measured displacements into the identification of the damage parameters, in order to cope with heterogeneity. In this method, instead of conducting a forward evaluation of the model and comparing the model response (displacements) against the data, we impose displacements to the model and compare the resulting force residuals with measured reaction forces. To account for uncertainties in the measurement of displacements, we endow this approach with a penalty term, which reflects the discrepancy between measured and imposed displacements, where the latter is assumed as unknown random variables to be identified as well. A Variational Bayesian approach is used as an approximating tool for computing posterior parameters. The underlying damage model considered in this work is a gradient-enhanced damage model. We first establish the identification procedure through two virtual examples, where synthetic data (displacements) are generated over a certain spatially-dense set of points over the domain. The procedure is then validated on an experimental case-study; namely a 3-point bending experiment with displacement measurements resulting from a digital image correlation (DIC) analysis. T2 - MSE 2022 CY - Online meeting DA - 27.09.2022 KW - Heterogeneity KW - Gradient damage KW - Model updating KW - Variational Bayesian KW - Concrete PY - 2022 AN - OPUS4-56625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Titscher, Thomas A1 - Robens-Radermacher, Annika A1 - Unger, Jörg F. T1 - Model calibration and damage detection for a digital twin N2 - Numerical models are an essential tool in predicting and monitoring the behavior of civil structures. Inferring the model parameters is a challenging tasks as they are often measured indirectly and are affected by uncertainties. Digital twins couple those models with real-world data and can introduce additional, systematic sensor uncertainties related to the sensor calibration, i.e. uncertain offsets and calibration factors. In this work, the challenges of data processing, parameter identification, model selection and damage detection are explored using a lab-scale cable stayed bridge demonstrator. By combining force measurements in the cables with displacement measurements from both laser and stereo-photogrammetry systems, the elastic parameters of a three-dimensional finite element beam model are inferred. Depending on the number of sensors and the number of datasets used, parametrizing the sensor offsets and factors, leads to model with over 100 parameters. With a real-time solution of the problem in mind, a highly efficient analytical variational Bayesian approach is used to solve it within seconds. An analysis of the required assumptions and limitations of the approach, especially w.r.t. to the computed evidence, is provided by a comparison with dynamic nested sampling in a simplified problem. Finally, by inferring the value of additional damage parameters along the bridge, the method is successfully used to detect the location of an artificially introduced weak spot in the demonstrator bridge. T2 - ECCOMAS 2022 CY - Oslo, Norway DA - 05.06.2022 KW - Bayesian identification KW - Digital twin KW - Variational Bayesian KW - Damage detection PY - 2022 AN - OPUS4-55083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Coelho Lima, Isabela A1 - Robens-Radermacher, Annika A1 - Titscher, Thomas A1 - Kadoke, Daniel A1 - Koutsourelakis, P.-S. A1 - Unger, Jörg F. T1 - Bayesian inference for random field parameters with a goal-oriented quality control of the PGD forwardmodel's accuracy JF - Computational mechanics N2 - Numerical models built as virtual-twins of a real structure (digital-twins) are considered the future ofmonitoring systems. Their setup requires the estimation of unknown parameters, which are not directly measurable. Stochastic model identification is then essential, which can be computationally costly and even unfeasible when it comes to real applications. Efficient surrogate models, such as reduced-order method, can be used to overcome this limitation and provide real time model identification. Since their numerical accuracy influences the identification process, the optimal surrogate not only has to be computationally efficient, but also accurate with respect to the identified parameters. This work aims at automatically controlling the Proper Generalized Decomposition (PGD) surrogate’s numerical accuracy for parameter identification. For this purpose, a sequence of Bayesian model identification problems, in which the surrogate’s accuracy is iteratively increased, is solved with a variational Bayesian inference procedure. The effect of the numerical accuracy on the resulting posteriors probability density functions is analyzed through two metrics, the Bayes Factor (BF) and a criterion based on the Kullback-Leibler (KL) divergence. The approach is demonstrated by a simple test example and by two structural problems. The latter aims to identify spatially distributed damage, modeled with a PGD surrogate extended for log-normal random fields, in two different structures: a truss with synthetic data and a small, reinforced bridge with real measurement data. For all examples, the evolution of the KL-based and BF criteria for increased accuracy is shown and their convergence indicates when model refinement no longer affects the identification results. KW - Variational inference KW - Proper generalized decomposition KW - Goal-oriented KW - Digital twin KW - Random field PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555755 DO - https://doi.org/10.1007/s00466-022-02214-6 SN - 1432-0924 SP - 1 EP - 22 PB - Springer CY - Berlin AN - OPUS4-55575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Robens-Radermacher, Annika A1 - Held, Felix A1 - Coelho Lima, Isabela A1 - Titscher, Thomas A1 - Unger, Jörg F. T1 - Efficient identification of random fields coupling Bayesian inference and PGD reduced order model for damage localization JF - Proceedings in Applied Mathematics & Mechanics N2 - One of the main challenges regarding our civil infrastructure is the efficient operation over their complete design lifetime while complying with standards and safety regulations. Thus, costs for maintenance or replacements must be optimized while still ensuring specified safety levels. This requires an accurate estimate of the current state as well as a prognosis for the remaining useful life. Currently, this is often done by regular manual or visual inspections within constant intervals. However, the critical sections are often not directly accessible or impossible to be instrumented at all. Model‐based approaches can be used where a digital twin of the structure is set up. For these approaches, a key challenge is the calibration and validation of the numerical model based on uncertain measurement data. The aim of this contribution is to increase the efficiency of model updating by using the advantage of model reduction (Proper Generalized Decomposition, PGD) and applying the derived method for efficient model identification of a random stiffness field of a real bridge.” KW - Model reduction KW - Model updating KW - Proper generalized decomposition KW - Random field KW - Variational Bayesian Inference PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521275 DO - https://doi.org/10.1002/pamm.202000063 VL - 20 IS - 1 SP - e202000063 PB - Wiley Online Libary AN - OPUS4-52127 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Titscher, Thomas A1 - Unger, Jörg F. T1 - Efficient higher-order cycle jump integration of a continuum fatigue damage model JF - International Journal of Fatigue N2 - Simulating high-cycle fatigue with continuum models offers the possibility to model stress-redistributions, consider 3Dstress states and simplifies extensions to multi-physics problems. The computational cost of conventional cycle-by-cycle time integrations is reduced by reformulating the fatigue problem as an ordinary differential equation for the material state and solving it with high-order adaptive time integration schemes. The computational cost of calculating the Change of the material state in one cycle is further reduced by a high-order fatigue-specific time integration. The approach is exemplarily demonstrated for a fatigue extension of the implicit gradient-enhanced damage model in 3D and compared to experimental Wöhler lines. KW - Cycle jump KW - Temporal multiscale KW - Fatigue modeling KW - Continuum damage mechanics KW - Regularized damage models PY - 2020 DO - https://doi.org/10.1016/j.ijfatigue.2020.105863 VL - 141 SP - 105863 PB - Elsevier Ltd. AN - OPUS4-51101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Titscher, Thomas A1 - Coehlo Lima, Isabela A1 - Unger, Jörg F. T1 - Model selection and model calibration for a digital twin N2 - The quality of a model - and thus its predictive capabilities - is influenced by numerous uncertainties. They include possibly unknown boundary and initial conditions, noise in the data used for its calibration and uncertainties in the model itself. Here, the latter part is not only restricted to uncertain model parameters, but also refers to the choice of the model itself. Inferring these uncertainties in an automatic way allows for an adaption of the model to new data sets and for a reliable, reproducible model assessment. Note that similar concepts apply at the structural level, where a continuously updated digital twin allows virtual measurements at inaccessible positions of the structure and a simulation based lifetime prediction. This work presents an inference workflow that describes the difference of measured data and simulated model responses with a generic interface that is independent from the specific model or even the geometry and can easily incorporate multiple data sources. A variational Bayesian inference algorithm is then used to a) calibrate a set of models to given data and to b) identify the best fitting one. The developed concepts are applied to a bridge Demonstrator equipped with displacement sensors, force sensors and a stereophotogrammetry system to perform a system identification of the material parameters as well as a real-time identification of a moving load. T2 - 6th GAMM AG Data Workshop CY - Berlin, Germany DA - 20.10.2020 KW - Digital twin KW - Demonstrator PY - 2020 AN - OPUS4-51532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Titscher, Thomas A1 - Unger, Jörg F. A1 - Oliver, J. T1 - Implicit explicit integration of gradient enhanced damage models JF - JOURNAL OF ENGINEERING MECHANICS N2 - Quasi-brittle materials exhibit strain softening. Their modeling requires regularized constitutive formulations to avoid instabilities on the material level. A commonly used model is the implicit gradient-enhanced damage model. For complex geometries, it still Shows structural instabilities when integrated with classical backward Euler schemes. An alternative is the implicit–explicit (IMPL-EX) Integration scheme. It consists of the extrapolation of internal variables followed by an implicit calculation of the solution fields. The solution procedure for the nonlinear gradient-enhanced damage model is thus transformed into a sequence of problems that are algorithmically linear in every time step. Therefore, they require one single Newton–Raphson iteration per time step to converge. This provides both additional robustness and computational acceleration. The introduced extrapolation error is controlled by adaptive time-stepping schemes. This paper introduced and assessed two novel classes of error control schemes that provide further Performance improvements. In a three-dimensional compression test for a mesoscale model of concrete, the presented scheme was about 40 times faster than an adaptive backward Euler time integration. KW - Implicit explicit schemes KW - Gradient-enhanced damage model KW - Adaptive time stepping KW - Continuum damage KW - Robustness PY - 2019 DO - https://doi.org/10.1061/(ASCE)EM.1943-7889.0001608 SN - 0733-9399 SN - 1943-7889 VL - 145 IS - 7 SP - 04019040-1 EP - 04019040-13 PB - ASCE - American Society of Civil Engineers AN - OPUS4-48361 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Titscher, Thomas T1 - Efficient computational mesoscale modeling of concrete under cyclic loading T2 - Thesis by compendium of publications N2 - Concrete is a complex material and can be modeled on various spatial and temporal scales. While simulations on coarse scales are practical for engineering applications, a deeper understanding of the material is gained on finer scales. This is at the cost of an increased numerical effort that can be reduced by the three methods developed and used in this work, each corresponding to one publication. The coarse spatial scale is related to fully homogenized models. The material is described in a phenomenological approach and the numerous parameters sometimes lack a physical meaning. Resolving the three-phase mesoscopic structure consisting of aggregates, the mortar matrix and the interfaces between them allow to describe similar effects with simpler models. KW - Concrete KW - Fatigue failure KW - Damage KW - Mesoscale PY - 2019 VL - 9 SP - 1 EP - 52 PB - UPC - Universitat Politecnica de Catalunya Barcelona CY - Barcelona AN - OPUS4-50362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Titscher, Thomas A1 - Unger, Jörg F. A1 - Oliver, Javier T1 - High-order cycle jump integration of a concrete fatigue damage model N2 - Fatigue models that accurately resolve the complex three-dimensional failure mechanisms of concrete are numerically expensive. Especially the calibration of fatigue parameters to existing Wöhler lines requires solving for thousands or millions of cycles and a naive cycle-by-cycle integration is not feasible. The proposed adaptive cycle jump methods provide a remedy to this challenge. They greatly reduce the numerical effort of fatigue simulations and provide the basis for a development of those models. T2 - 8th GACM Colloquium on Computational Mechanics CY - Kassel, Germany DA - 28.08.2019 KW - Time scale separation KW - Cycle jump KW - Fatigue damage PY - 2019 AN - OPUS4-52191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -