TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Trace compounds in Early Medieval Egyptian blue carry information on provenance, manufacture, application, and ageing N2 - Only a few scientific evidences for the use of Egyptian blue in Early Medieval wall paintings in Central and Southern Europe have been reported so far. The monochrome blue fragment discussed here belongs to the second church building of St. Peter above Gratsch (South Tyrol, Northern Italy, fifth/ sixth century A.D.). Beyond cuprorivaite and carbon black (underpainting), 26 accessory minerals down to trace levels were detected by means of Raman microspectroscopy, providing unprecedented insights into the raw materials blend and conversion reactions during preparation, application, and ageing of the pigment. In conjunction with archaeological evidences for the manufacture of Egyptian blue in Cumae and Liternum and the concordant statements of the antique Roman writers Vitruvius and Pliny the Elder, natural impurities of the quartz sand speak for a pigment produced at the northern Phlegrean Fields (Campania, Southern Italy). Chalcocite (and chalcopyrite) suggest the use of a sulphidic copper ore, and water-insoluble salts a mixed-alkaline flux in the form of plant ash. Not fully reacted quartz crystals partly intergrown with cuprorivaite and only minimal traces of silicate glass portend solid-state reactions predominating the chemical reactions during synthesis, while the melting of the raw materials into glass most likely played a negligible role. KW - Egyptian blue KW - Raman microspectroscopy KW - Spectoscopic imaging KW - Cuprorivaite KW - Amorphous carbon PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-537591 VL - 11 SP - 1 EP - 12 PB - Nature Portfolio AN - OPUS4-53759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Kraft, Ronja A1 - Dariz, P. T1 - Shedding light onto the spectra of lime - Part 2: Raman spectra of Ca and Mg carbonates and the role of d-block element luminescence N2 - We previously described the observation of a characteristic narrowband red luminescence emission of burnt lime (CaO), whose reason was unknown so far. This study presents Raman spectra of Mg5 CO3)4(OH)2∙4H2O, Mg5(CO3)4(OH)2, MgCO3, CaMgCO3 and CaCO3 (in limestone powder) as well as luminescence spectra of their calcination products. Comparison of the latter revealed MgO:Cr3+ as the source of the red lime luminescence in all studied samples, containing magnesium oxide as major component, minor component or trace. Spectral characteristics and theoretical background of the luminescence emission of d-block elements integrated in crystal lattices are discussed with the aim of sharpening the awareness for this effect in the Raman community and promoting its application in materials analysis. The latter is demonstrated by the Raman microspectroscopic imaging of the distributions of both Raman-active and Raman-inactive phases in clinker remnants in a 19th-century meso Portland cement mortar sample, which contain relatively high amounts of free lime detected in the form of both luminescing CaO and Raman-scattering Ca(OH)2, owing to exposure of the surface of the thin section to humid air. A combination of light and Raman spectroscopy revealed a calcium–magnesium–iron sulphide phase, indicating sulphurous raw materials and/or solid fuels employed in the calcination process, which in contrast to previously described morphologies of sulphides in cement clinker form extensive greenish black layers on free lime crystals. KW - Calcium carbonates KW - Raman spectroscopy KW - Luminescence KW - Magnesium carbonates KW - Meso Portland cement PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-537611 SN - 0377-0486 VL - 52 IS - 8 SP - 1462 EP - 1472 PB - Wiley Analytical Science AN - OPUS4-53761 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Hidde, Julia A1 - Grünier, Sophie A1 - Jungnickel, Robert A1 - Dariz, P. A1 - Riedel, Jens A1 - Neuhaus, B. T1 - Ageing effects in mountig media of microscope slide samples from natural history collections: A case study with Canada balsam and Permount™ N2 - Microscope slide collections represent extremely valuable depositories of research material in a natural history, forensic, veterinary, and medical context. Unfortunately, most mounting media of these slides deteriorate over time, with the reason for this not yet understood at all. In this study, Raman spectroscopy, ultraviolet–visible (UV–Vis) spectroscopy, and different types of light microscopy were used to investigate the ageing behaviour of naturally aged slides from museum collections and the experimentally aged media of Canada balsam and Permount™, representing a natural and a synthetic resin, respectively, with both being based on mixtures of various terpenes. Whereas Canada balsam clearly revealed chemical ageing processes, visible as increasing colouration, Permount™ showed physical deterioration recognisable by the increasing number of cracks, which even often impacted a mounted specimen. Noticeable changes to the chemical and physical properties of these mounting media take decades in the case of Canada balsam but just a few years in the case of Permount™. Our results question whether or not Canada balsam should really be regarded as a mounting medium that lasts for centuries, if its increasing degree of polymerisation can lead to a mount which is no longer restorable. KW - Deterioration KW - Microscope slides KW - Mounting media KW - Raman spectroscopy KW - UV–Vis spectroscopy PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-537632 VL - 13 IS - 13 SP - 1 EP - 27 PB - MDPI CY - Basel AN - OPUS4-53763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Raman focal point on Roman Egyptian blue elucidates disordered cuprorivaite, green glass phase and trace compounds N2 - The discussed comparative analyses of Roman Imperial pigment balls and fragmentary murals unearthed in the ancient cities of Aventicum and Augusta Raurica (Switzerland) by means of Raman microspectroscopy pertain to a predecessor study on trace compounds in Early Medieval Egyptian blue (St. Peter, Gratsch, South Tyrol, Northern Italy). The plethora of newly detected associated minerals of the raw materials surviving the synthesis procedure validate the use of quartz sand matching the composition of sediments transported by the Volturno river into the Gulf of Gaeta (Campania, Southern Italy) with a roasted sulphidic copper ore and a mixed-alkaline plant ash as fluxing agent. Thus, the results corroborate a monopolised pigment production site located in the northern Phlegrean Fields persisting over the first centuries A.D., this in line with statements of the antique Roman writers Vitruvius and Pliny the Elder and recent archaeological evidences. Beyond that, Raman spectra reveal through gradual peak shifts and changes of band width locally divergent process conditions and compositional inhomogeneities provoking crystal lattice disorder in the chromophoric cuprorivaite as well as the formation of a copper-bearing green glass phase, the latter probably in dependency of the concentration of alkali flux, notwithstanding that otherwise solid-state reactions predominate the synthesis. KW - Raman microspectroscopy KW - Egyptian blue KW - Cuprorivaite PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-559028 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 12 PB - Nature Publishing Group CY - London AN - OPUS4-55902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Neubauer, J. A1 - Goetz-Neunhoeffer, F. A1 - Schmid, Thomas T1 - Calcium aluminates in clinker remnants as marker phases for various types of 19th-century cement studied by Raman microspectroscopy N2 - In the second half of the 19th century, Roman and Portland cements played an essential role as active hydraulic binder material in building construction and façade ornamentation. Size and heterogeneous phase assemblage of unhydrated cement clinker remnants in historical cement stone differ significantly from those of remnants occurring in modern Portland cement clinker burnt in rotary kilns due to limitations of the production technology available in the 19th century (e.g., comminution and homogeneity of the feedstock, burning temperature and regime in the intermittently operated shaft kilns, grinding machinery). In the common analytical approach, thin sections and fracture surfaces of historical Roman and Portland cement mortars are characterised regarding their mineralogical composition and microstructure using optical and electron microscopic imaging techniques. Raman microspectroscopy can be additionally employed for petrographic examination, overcoming some limitations of the methods used so far. The determination of the phase content of residual cement clinker grains in the hydrated matrix allows for the differentiation of Roman and Portland cement binders. As marker phases, we propose the calcium aluminates CA, C12A7, C2AS and C3A – besides the commonly used calcium silicates C2S and C3S – because of their different formation temperatures and stability fields. This study focuses on the identification of different calcium aluminate and aluminoferrite phases in clinker remnants in samples of cast ornaments of three buildings in Switzerland raised between 1875 and 1893; the obtained Raman spectra are compared with fingerprint spectra of the corresponding pure, synthesised clinker phases collected with the same instrument for an unambiguous data interpretation. In addition to these phases, mainly minerals showing no hydraulic activity, such as, wollastonite CS, rankinite C3S2, free lime, portlandite, iron oxides, garnets, augite, albite and feldspathoids have been identified in the sampled historical cement stones by Raman microspectroscopy. As there is a strong relationship between coexisting clinker phases and the chemical composition of the raw meal as well as the burning and cooling history during clinkering, the results can help in understanding the physical and mechanical characteristics of historical cement mortars. This knowledge is fundamental for the choice and the formulation of appropriate repair materials with tailored properties employed in the field of restoration and preservation of the architectural heritage of the 19th and early 20th centuries. KW - Roman cement KW - Meso Portland cement KW - Portland cement KW - Clinker relicts KW - Raman microspectroscopy PY - 2016 U6 - https://doi.org/10.1127/ejm/2016/0028-2577 SN - 0935-1221 SN - 1617-4011 VL - 28 IS - 5 SP - 907 EP - 914 AN - OPUS4-39046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Dariz, P. T1 - Chemical imaging of historical mortars by Raman microscopy N2 - Raman microspectroscopic imaging was just recently introduced into the analysis of cement stone. Here, we demonstrate this approach on 19th-century Roman and Portland cement mortars and extend it to gypsum-based samples originating from a medieval stucco sculpture (high-burnt gypsum) and a stucco ornament prefabricated at the beginning of the 20th century (plaster of Paris). Furthermore, the distributions of dolomite and Calcite were mapped in an accessory mineral grain with approx. 500 nm lateral Resolution demonstrating the ability for studying alteration processes such as dedolomitisation. As we would like to make this approach accessible to other researchers, we discuss its present status, advantages, limitations and pitfalls. KW - Raman microscopy KW - Chemical imaging KW - Cement clinker KW - Gypsum KW - Dedolomite PY - 2016 U6 - https://doi.org/10.1016/j.conbuildmat.2016.03.153 SN - 0950-0618 VL - 114 SP - 506 EP - 516 PB - Elsevier Science CY - Oxford, UK AN - OPUS4-36661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Schmid, Thomas T1 - Phase composition and burning history of high-fired medieval gypsum mortars studied by Raman microspectroscopy N2 - The use of high-fired gypsum as binder for masonry and joint mortars or stuccowork in Central Europe in the Early and High Middle Ages was a regional specific as it depended on local gypsum deposits. The calcination technology possible at the time resulted in an assemblage of calcium sulphate phases dehydrated to different degrees and partly thermally damaged accessory minerals of the raw gypsum. Not hydrated clusters of firing products preserved in the binder matrix are a typical feature of such mortars. A novel Raman microspectroscopic approach, providing access to the burning history of individual anhydrite grains, was applied to samples from medieval South Tyrolean stucco decorations and sculptures. Beyond that, Raman microspectroscopy was employed for tracing and visualising pyrometamorphic reactions in natural impurities of the kiln run. In the discussed examples mineral thermometry indicates process temperatures above 800°C: the breakdown of magnesium-rich chlorite led to the formation of forsterite Mg2SiO4, while the thermal decomposition of dolomite CaMg(CO3)2 to periclase MgO and lime CaO yielded – after hydration and carbonation – magnesite MgCO3, CaCO3 polymorphs and magnesian calcite. Hydration of periclase in the mixed gypsum paste containing sulphate ions also resulted in magnesium sulphate hydrates, here identified in the form of hexahydrite MgSO4·6H2O. Lower burning temperatures left the accessory minerals in their pristine form, but can be traced by measuring the spectra of individual anhydrite crystals in grains of firing products and evaluating Raman band widths. Throughout the present study, calcination temperatures ranging from approx. 600°C to 900°C were determined. KW - High-fired gypsum mortar KW - Anhydrite KW - Dolomite KW - Forsterite KW - Raman microspectroscopy PY - 2019 U6 - https://doi.org/10.1016/j.matchar.2019.03.013 VL - 151 SP - 292 EP - 301 PB - Elsevier Inc. AN - OPUS4-48102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Dariz, P. T1 - Shedding light onto the spectra of lime: Raman and luminescence bands of CaO, Ca(OH)2 and CaCO3 N2 - In microscopy studies of 19th-century cement stone, we found free lime in the form of darkened spherical structures, as they were described in the literature already. When trying to determine their phase composition by Raman spectroscopy, we encountered contradictive assignments in literature spectra of the lime phases CaO, Ca(OH)2 and CaCO3 and observed strong spectral features that have been ignored or erroneously assigned so far. In this study we present Raman spectra of pure lime phases and of a naturally grown calcite crystal, burnt limestone (quick lime, mainly CaO), aged slaked lime putty (mainly Ca(OH)2), and carbonated lime putty (mainly CaCO3). Based on the results, we shed light mainly onto these two questions: (1) Does CaO have a Raman spectrum? (2) Which features in the spectra are luminescence bands that could be (and already have been) misinterpreted as Raman bands? We proof our assignment of luminescence bands in lime phases by using three different laser wavelengths for excitation, and give hypotheses on the origin of the luminescence as well as practical advices on how to identify these misleading features in Raman spectra. This article is mainly addressed to users of Raman spectroscopy in different fields of material analysis who might not be aware of the presence of interfering bands in their spectra. KW - (Free) lime KW - Lime cycle KW - Lime phases KW - Calcium compounds KW - Luminescence PY - 2015 U6 - https://doi.org/10.1002/jrs.4622 SN - 0377-0486 SN - 1097-4555 VL - 46 IS - 1 SP - 141 EP - 146 PB - Wiley & Sons, Ltd. CY - Chichester AN - OPUS4-32559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Jungnickel, Robert A1 - Dariz, P. T1 - Insights into the CaSO4–H2O System: A Raman-Spectroscopic Study N2 - Even though being the subject of natural scientific research for many decades, the system CaSO4–H2O, consisting of the five crystalline phases gypsum, bassanite, and the anhydrites III, II, and I, has left many open questions for research. Raman spectroscopy was used because of its structural sensitivity and in situ measurement capability to obtain further insight by studying phase transitions in both ex situ and in situ experiments. The findings include significant contributions to the completeness and understanding of Raman spectroscopic data of the system. The dehydration path gypsum–bassanite–anhydrite III was shown to have strong parallels to a physical drying process, which depends on many parameters beyond the burning temperature. Raman band width determination was demonstrated to enable the quantitative discrimination of α-bassanite and β-bassanite as well as the postulated three sub-forms of anhydrite II (AII), which are all based on differences in crystallinity. In the latter case, the observed continuous structural variations over increasing burning temperatures were elucidated as a combination of decreasing surface areas and healing of crystal lattice defects. We propose an only two-fold sub-division of AII into reactive “disordered AII” and much less reactive “crystalline AII” with a transition temperature of 650°C ± 50 K. KW - Gypsum KW - Bassanite KW - Hemihydrate KW - Anhydrite KW - Raman spectroscopy PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506701 SN - 2075-163X VL - 10 IS - 2 SP - 115, 35 PB - MDPI CY - Basel AN - OPUS4-50670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Jungnickel, R. A1 - Dariz, P. T1 - Raman band widths of anhydrite II reveal the burning history of high‐fired medieval gypsum mortars N2 - When used as a mineral binder, gypsum is thermally dehydrated and mixed with water, resulting in a paste hardening in the backreaction to calcium sulphate dihydrate (CaSO4 · 2 H2O). Although nowadays mainly hemihydratebased (CaSO4 · ½ H2O) binders are employed, higher firing temperatures in medieval kilns yielded anhydrite II (CaSO4). Except for the discrimination of the metastable phases anhydrite III and I due to different crystal structures, variations within the production temperature range of anhydrite II (approximately 300 to 1180°C) were not analytically accessible until recently. This study describes the development of an analytical technique, which is based on steady changes of band widths in room‐temperature Raman spectra of anhydrite II as a function of burning temperature. Raman microspectroscopic mapping experiments enable to pinpoint individual unreacted grains of thermal anhydrite in mortars and to discriminate them from natural anhydrites originating from the raw gypsum. The determination of band full widths at half maximum of down to 3 cm−1 and differences between them of a few tenths of wavenumbers is not a trivial task. Thus, a focus of this work is on peak fitting and strategies for correction of instrument‐dependent band broadening, which is often neglected also beyond the field of mortar analysis. Including other potential influences on band widths, burning temperatures of 400 to 900°C can be retraced in high‐fired medieval gypsum mortars with an uncertainty of approximately ± 50 K, as demonstrated with sample material of a stucco sculpture dated around 1400. KW - Analytical methods KW - Gypsum dehydration KW - High-fired gypsum mortar KW - Raman band width determination KW - Thermal anhydrite PY - 2019 U6 - https://doi.org/10.1002/jrs.5632 SN - 1097-4555 VL - 50 IS - 8 SP - 1154 EP - 1168 PB - Wiley AN - OPUS4-48757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -