TY - JOUR A1 - König, S. A1 - Diersch, R. A1 - Lührmann, A. A1 - Müller, Karsten A1 - Neumann, Martin A1 - Quercetti, Thomas A1 - Droste, Bernhard T1 - Full-Scale Drop Testing of the CONSTOR®, V/TC Package Program, and Preliminary Results JF - Journal of nuclear materials management KW - Drop test KW - Package KW - Spent fuel cask KW - Transport PY - 2005 SN - 0893-6188 VL - 33 IS - 3 SP - 4 EP - 10 PB - Institute of Nuclear Materials Management CY - Northbrook, Ill. AN - OPUS4-12269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quercetti, Thomas A1 - Ballheimer, Viktor A1 - Droste, Bernhard A1 - Müller, Karsten T1 - Internal cask content collisions during drop test of transport casks for radioactive materials JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - In transport casks for radioactive materials, significantly large axial and radial gaps between cask and internal content are often present because of certain specific geometrical dimensions of the content (e.g. spent fuel elements) or thermal reasons. The possibility of inner relative movement between content and cask will increase if the content is not fixed. During drop testing, these movements can lead to internal cask content collisions, causing significantly high loads on the cask components and the content itself. Especially in vertical drop test orientations onto a lid side of the cask, an internal collision induced by a delayed impact of the content onto the inner side of the lid can cause high stress peaks in the lid and the lid bolts with the risk of component failure as well as impairment of the leak tightness of the closure system. This paper reflects causes and effects of the phenomenon of internal impact on the basis of experimental results obtained from instrumented drop tests with transport casks and on the basis of analytical approaches. Furthermore, the paper concludes the importance of consideration of possible cask content collisions in the safety analysis of transport casks for radioactive materials under accident conditions of transport. KW - Drop test KW - Cask KW - Internal collision KW - Transport KW - Radioactive material PY - 2013 DO - https://doi.org/10.1179/1746510913Y.0000000032 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 24 IS - 2 SP - 75 EP - 82 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-31306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Melnik, Nauka A1 - Droste, Bernhard T1 - Impact target characterisation of BAM drop test facility JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - BAM safety related research of containers for radioactive material focuses on advanced mechanical safety assessment methods for verification of the structural integrity and leak tightness under normal conditions of transport and hypothetical accident conditions during transport and storage. An essentially unyielding target with a rigid surface is required for impact tests performed for package approval according to IAEA regulations. In addition to specification of a target, e.g. with a combined mass more than 10 times that of the specimen for drop tests, unyielding target characteristics have been investigated with various package designs and different impact tests. The unyielding target of the BAM drop test facility, a reinforced concrete block together with an embedded and anchored mild steel plate, provides relatively large mass and stiffness with respect to the packages being tested. For monitoring reasons accelerometers and strain gauges are embedded in the concrete block of the foundation at several positions. Additionally, dynamic impact responses like vibrations and rigid body motion can be measured by seismic accelerometers. The mechanical characterisation of the target's rigidity is based on experimental results from various drop tests. Test containers with weights of 181 000 kg, 127 000 kg and 8010 kg hit the target with velocities up to 13·5 m s-1 in the horizontal and vertical drop positions. The rigidity of the impact target can be demonstrated with experimental results confirmed by analytical approaches. Some conclusions can be drawn about experimental testing as well as analytical calculations in order to compare impact effects. KW - Target KW - Unyielding KW - Impact KW - Drop test PY - 2009 DO - https://doi.org/10.1179/174651008X344449 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 19 IS - 4 SP - 217 EP - 221 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-20136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quercetti, Thomas A1 - Nakagami, M. A1 - Komatsuki, S. A1 - Musolff, André A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Fujisawa, K. T1 - Disposal container safety assessment - drop tests with 'Yoyushindo-disposal' waste container onto concrete target JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - This paper presents technical details of the drop test performance as well as some experimental results of tests carried out with the Japanese 'Yoyushindo-Disposal' waste container for intermediate depth disposal. The drop test program comprised three single 8 m drop tests at the specimen's corner edge orientation onto a concrete slab. The slab was connected to the unyielding IAEA target of the BAM's 200 t drop test facility. The three tested specimens had masses between 20 000 and 28 000 kg depending on their content mass. The tests were accompanied by various metrology, such as strain and deceleration measurements, optical three-dimensional deformation methods, leak tightness testing and test installation for potential particle release measurements to collect a set of data for establishing a basis for safety assessment. KW - Drop test KW - Disposal container KW - Safety PY - 2010 DO - https://doi.org/10.1179/174650910X12681251630291 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 21 IS - 3 SP - 132 EP - 141 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-22613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Gründer, Klaus-Peter T1 - Experimental testing of impact limiters for RAM packages under drop test conditions JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - In context with new cask designs and their approval procedure, the experimental testing of impact limiters under drop test conditions becomes more and more important in order to assess the damage mechanics behaviour and safety margins for validation reasons. In recent years, various designs of impact limiters have been tested by the Federal Institute for Materials Research and Testing within specific component testing and particularly with regard to type B package design approval procedures. The paper focuses on the experimental realisation of impact limiter tests and presents implemented measurement techniques to determine the amount of deformation and to explain the impact behaviour by means of photogrammetric metrology and three-dimensional fringe projection method, high speed motion analysis and adjusted deceleration measurements. KW - Experimental KW - Drop test KW - Impact limiter KW - Close range photogrammetry PY - 2014 DO - https://doi.org/10.1179/1746510915Y.0000000003 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 3-4 SP - 133 EP - 138 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-33776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -