TY - CONF A1 - Quercetti, Thomas A1 - Ballheimer, Viktor A1 - Zeisler, Peter A1 - Müller, Karsten T1 - Interactions between Cask Components and Content of Packaging for the Transport of Radioactive Material During Drop Tests N2 - This paper describes the analytical, numerical and experimental investigations on the phenomenon of interactions between cask components and content of packages for the transport of radioactive material during drop tests required according to the IAEA Regulations for the Safe Transport of Radioactive Material. Radial and axial gaps between cask components and content are usually necessary for thermal reasons but larger gaps can exist because of the geometrical dimensions of the specified content. Consequently interactions between content and cask components (lid system, cask body, etc.) are possible and can not be excluded during drop tests. Interactions in this context are relative movements between cask and content which are mainly due to elastic spring effects after releasing the cask for the free drop. These relative movements can cause interior collisions between content and cask during the main impact of the package onto the unyielding target. Drop tests with various types of Type A and Type B packages fully instrumented with strain gauges and accelerometers showed that these interactions respectively interior collisions can be considerable relating to high forces acting on cask lids, lid bolts and the content. Of course the real quantitative consequences of the interactions depend upon different conditions, among others the drop orientation, the design characteristics of the impact limiters, the dimensions of the gaps, the material characteristics of the contents, etc. . In order to investigate more precisely the phenomenon of interactions BAM carried out finite element calculations for the named casks using the ABAQUS/ Standard and ABAQUS/ Explicit computer code comparing them with results obtained from experiments. Additionally, tests with a simplified model instrumented with accelerometers were carried out accompanied by finite element calculations and analytical calculations using MATHEMATICA. The investigations on the mentioned phenomena of interaction show that they should be considered in approval design tests and/ or calculations. T2 - 17th International Conference on Structural Mechanics in Reactor Technology ; SMiRT 17 CY - Prague, Czech Republic DA - 2003-08-17 PY - 2003 UR - http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/36/071/36071659.pdf IS - G04-4 SP - 1(?) EP - 8(?) CY - Prague AN - OPUS4-2825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Zeisler, Peter T1 - Effects and Consequences of Interactions between Containment Components and Content of Type B Packages during 9 m Drop Tests N2 - Tests with different Type B casks confirm the existence of effects with stress peaks in cask components due to interactions between the cask and its contents. These effects can be caused by a delayed strike of the content onto surrounding cask components which cannot be excluded if the content is movable. Some results of the drop tests with two different Type B casks and with a model designed for the study of this problem are presented in the paper. Results of calculations performed with the ABAQUS computer code and by use of analytical methods to simulate the measured effects are discussed. T2 - 6th International Conference on Radioactive Materials Transport ; 6th International Conference CY - Edinburgh, Scotland, UK DA - 2002-11-05 PY - 2002 UR - http://www.tes.bam.de/de/umschliessungen/behaelter_radioaktive_stoffe/dokumente_veranstaltungen/pdf/rmtp2002133-4305.pdf SN - 0957-476X VL - 130 IS - 3-4 SP - 305 EP - 312 PB - Nuclear Technology Publ. CY - Ashford, Kent AN - OPUS4-2590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quercetti, Thomas A1 - Ballheimer, Viktor A1 - Wieser, Günter T1 - Analytical, numerical and experimental investigations on the impact behaviour of packagings for the transport of radioactive material under slap down conditions T2 - PATRAM 2001, 13th International Symposium on Packaging and Transportation of Radioactive Materials CY - Chicago, IL, United States of America DA - 2001-09-03 PY - 2001 SN - 0893-6188 VL - 30 IS - 3 SP - 18 EP - 25 PB - Institute of Nuclear Materials Management CY - Northbrook, Ill. AN - OPUS4-1940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jahreiß, W. A1 - Phillippczyk, U. A1 - Paulinyi, W. A1 - Quercetti, Thomas T1 - ANF-18 - A new transport container for fresh PWR fuel assemblies according to IAEA requirements T2 - PATRAM 2001 ; Annual International Symposium on Packaging and Transportation of Radioactive Materials CY - Chicago, IL, USA DA - 2001-09-03 PY - 2001 IS - CD-ROM PB - PATRAM CY - Chicago, Ill. AN - OPUS4-1887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Müller, Karsten T1 - Importance of Strain And Acceleration Measurements During Drop Tests For Safety Analysis And Package Design Optimization T2 - 14th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Berlin, Germany DA - 2004-09-20 PY - 2004 AN - OPUS4-6833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - König, S. A1 - Diersch, R. A1 - Lührmann, A. A1 - Müller, Karsten A1 - Neumann, Martin A1 - Quercetti, Thomas A1 - Droste, Bernhard T1 - Full-Scale Drop Testing of the CONSTOR®, V/TC Package Program, and Preliminary Results KW - Drop test KW - Package KW - Spent fuel cask KW - Transport PY - 2005 SN - 0893-6188 VL - 33 IS - 3 SP - 4 EP - 10 PB - Institute of Nuclear Materials Management CY - Northbrook, Ill. AN - OPUS4-12269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Ballheimer, Viktor A1 - Zeisler, Peter A1 - Müller, Karsten T1 - Interactions Between Cask Components and Content of Packaging for the Transport of Radioactive Material During Drop Tests T2 - 17. International Conference on Structural Mechanics in Reactor (SmiRT 17) CY - Prague, Czech Republic DA - 2003-08-17 PY - 2003 AN - OPUS4-5281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Droste, Bernhard A1 - Müller, Karsten A1 - Quercetti, Thomas T1 - Full-scale Drop Testing of Spent Fuel Transport and Storage Casks: experiences of BAM and new Developments T2 - 46th Annual Meeting of the Institute for Nuclear Materials Management CY - Phoenix, AZ, USA DA - 2005-07-10 KW - Drop tests KW - Spent fuel transport packages PY - 2005 SP - 6 pages PB - Institute for Nuclear Materials Management CY - Phoenix AN - OPUS4-7614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Ballheimer, Viktor A1 - Droste, Bernhard A1 - Müller, Karsten T1 - Internal Cask-Content-Collisions During Drop Test of Transport Casks for Radioactive Materials T2 - Radioactive Materials Transport and Storage Conference and Exhibition 2012, Royal Geographical Society CY - London, England DA - 2012-05-23 PY - 2012 AN - OPUS4-25996 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Komann, Steffen T1 - Drop test program with half scale model CASTOR HAW/TB2 N2 - Federal Institute for Materials Research and Testing (BAM) is the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste in Germany. In context with package design approval of the new German high level waste cask CASTOR® HAW28M, BAM performed several drop tests with a half scale model of the CASTOR® HAW/TB2. The cask is manufactured by Gesellschaft für Nuklear Service mbH and was tested under accident transport conditions on the 200 tons BAM drop test facility at the BAM Test Site Technical Safety. For this comprehensive test program, the test specimen CASTOR® HAW/TB2 was instrumented at 21 measurement planes with altogether 23 piezo resistive accelerometers, five temperature sensors and 131 triaxial strain gauges in the container interior and exterior respectively. The strains of four representative lid bolts were recorded by four uniaxial strain gauges per each bolt. Helium leakage rate measurements were performed before and after each test in the above noted testing sequence. The paper presents some experimental results of the half scale CASTOR® HAW/TB2 prototype (14 500 kg) and measurement data logging. It illustrates the extensive instrumentation and analyses that are used by BAM for evaluating the cask performance to the mechanical tests required by regulations. Although some of the quantitative deceleration, velocity and strain values cannot be shown because of confidentially issues, they are provided qualitatively to illustrate the types of measurements and methodologies used at BAM. KW - IAEA drop testing KW - Half scale model KW - Experimental test PY - 2011 U6 - https://doi.org/10.1179/1746510911Y.0000000013 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 3 SP - 154 EP - 160 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-25293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Komann, Steffen A1 - Droste, Bernhard A1 - Müller, Karsten A1 - Quercetti, Thomas T1 - Drop test program with a HLW cask model - performance, measurements and results N2 - BAM (Federal Institute for Material Research and Testing) is the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste (HLW) in Germany. In context with package design approval of the new German HLW cask CASTOR HAW28M, BAM performed several drop tests with a half-scale model of the CASTOR HAW/TB2. The test model was manufactured by GNS (Gesellschaft fur Nuklear Service mbH) and tested under accident transport conditions on the 200 tons BAM drop test facility at the BAM Test Site Technical Safety. For this comprehensive test program the test specimen CASTOR HAW/TB2 was instrumented at 21 measurement planes with altogether 23 piezo-resistive accelerometers, five temperature sensors and 131 tri-axial strain gauges in the container interior and exterior, respectively. The strains of four representative lid bolts were recorded by four uniaxial strain gauges per each bolt. Helium leakage rate measurements were performed before and after each test in the above noted testing sequence. The paper presents some experimental results of the half-scale CASTOR HAW/TB2 prototype (14,500 kg) and measurement data logging. T2 - 52nd INMM Annual meeting CY - Palm Desert, CA, USA DA - 17.07.2011 KW - Drop test results KW - Spent fuel transport cask KW - Impact limiter KW - Measurement methods KW - Drop test program PY - 2011 SP - 1 EP - 9 AN - OPUS4-24245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nehrig, Marko A1 - Wille, Frank A1 - Quercetti, Thomas A1 - Masslowski, Jörg-Peter A1 - Droste, Bernhard A1 - Pope, R. T1 - Historical view and experiences with crush test for light weight packages N2 - The crush test for light weight and low density type B packages was introduced for the first time into the 1985 edition of the International Atomic Energy Agency (IAEA) transport safety regulations. In the early 1970s, the need for an additional mechanical test besides or instead of the well known 9 m drop test was deliberated. Various authors and test facilities, including BAM and Sandia National Laboratories (SNL), were able to prove that the level of safety provided by IAEA drop and puncture tests in the regulations did not protect against dynamic crush forces to smaller packages. As early as the third PATRAM symposium held in 1971 (Richland, WA, USA), Robert F. Barker asked for '... a more strenuous crushing test for protecting small, light weight packages ...' BAM developed from research activities a proposal as to which types of packages should be subject to crush tests and how the crush tests should be performed, which was presented at the 5th PATRAM symposium held in 1978 (Las Vegas, NV, USA). At the IAEA, the possible need for a crush test was first mentioned in 1977. The subject for a discussion, besides the principal need for this test, was also the development of suitable set of crush test boundary conditions. It took more than four years of discussion until a dynamic crush test similar to today's test was recommended by experts to the IAEA regulatory revision panel. Finally, after a rigorous evaluation process in which also the boundary conditions were determined, the crush test was proposed to be incorporated into the IAEA regulations. BAM and SNL participated in the crush test development and implementation process right from the beginning in the early 1970s until its implementation in the IAEA regulations in 1985. Today, BAM performs crush test procedures according to para. 727(c) of TS-R-1, which have not been changed since their first implementation. Crush tests performed in 2002 at BAM will be discussed. These approval design tests were performed on birdcage pellet transport containers under normal and accident conditions according to the IAEA regulations. KW - Package testing KW - Crush testing KW - Regulations PY - 2011 U6 - https://doi.org/10.1179/1746510911Y.0000000016 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 3 SP - 125 EP - 129 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-25349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gründer, Klaus-Peter A1 - Quercetti, Thomas T1 - Determination of lid displacements by photogrammetry in full-scale cask drop tests T2 - 3rd International Conference on Materials Testing "TEST 2005" CY - Nuremberg, Germany DA - 2005-05-10 PY - 2005 SP - C7-93 - C7-96 PB - AMA Service GmbH CY - Nürnberg AN - OPUS4-11472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gründer, Klaus-Peter A1 - Quercetti, Thomas T1 - Einsatz der Photogrammetrie zur Bestimmung von Deckelverschiebungen im Rahmen der sicherheitstechnischen Beurteilung von Behältern für radioaktive Stoffe T2 - GESA-Symposium 2005 : Strukturanalyse CY - Saarbrücken, Deutschland DA - 2005-09-21 PY - 2005 SN - 3-18-091899-3 SN - 0083-5560 N1 - Serientitel: VDI-Berichte – Series title: VDI-Berichte IS - 1899 SP - 261 EP - 268 PB - VDI-Verl. CY - Düsseldorf AN - OPUS4-11471 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Droste, Bernhard T1 - Measurement techniques and preliminary results of drop tests with full scale spent fuel transport and storage casks KW - Drop testing KW - Full scale spent fuel cask KW - Deceleration KW - Strain PY - 2006 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 17 IS - 4 SP - 191 EP - 195 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-14431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - König, S. A1 - Diersch, R. A1 - Lührmann, A. A1 - Müller, Karsten A1 - Neumann, Martin A1 - Quercetti, Thomas A1 - Droste, Bernhard T1 - Full-scale Drop Testing of the CONSTOR V/TC Package - Program and Preliminary Results KW - Fallversuche KW - Transportbehälter für radioaktive Stoffe PY - 2005 SN - 0893-6188 VL - 33 IS - 3 SP - 4 EP - 10 PB - Institute of Nuclear Materials Management CY - Northbrook, Ill. AN - OPUS4-6875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Musolff, André T1 - Characterisation of shock-absorbing components under impact loading N2 - For validation of structural integrity under normal and hypothetical accident conditions during transport and storage of dangerous goods the Federal Institute for Materials Research and Testing (BAM) focuses its safety related scientific research on advanced mechanical safety assessment methods including simulation of high rate impact of model components and structures. An impact and crash test facility was recently developed for performing dynamic impact tests with component size specimen, or to crash specimens of impact limiter materials and structural components. The paper presents experimental techniques of BAM drop test machine and options of several measurement methods and advancements in order to characterize typical shock-absorbing materials under impact loading conditions. Instrumented drop weight tests are performed to complete materials data base and energy absorption of shock-absorbing materials as well as to implement materials and structural parameters into FEA of reference structures. T2 - 9th International conference on the mechanical and physical behaviour of materials under dynamic loading - DYMAT 2009 CY - Brussels, Belgium DA - 2009-09-07 PY - 2009 SN - 978-2-7598-0472-6 U6 - https://doi.org/10.1051/dymat/2009081 VL - 1/2 SP - 569 EP - 574 PB - EDP Sciences AN - OPUS4-20242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Droste, Bernhard A1 - Gogolin, Bernd A1 - Quercetti, Thomas A1 - Rittscher, D. T1 - Drop test of a cubic DCI container for radioactive wastes T2 - PATRAM ´92 - 10th International symposium on the packaging and transportation of radioactive materials CY - Yokohama, Japan DA - 1992-09-13 PY - 1992 VL - 3 SP - 1435 EP - 1442 AN - OPUS4-21823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Droste, Bernhard A1 - Musolff, André A1 - Müller, Karsten A1 - Quercetti, Thomas T1 - Drop and fire testing of spent fuel and HLW transport casks at "BAM test site technical safety" - 10079 T2 - WM2010 - 36th Annual radioactive waste management symposium CY - Phoenix, Arizona, USA DA - 2010-03-07 KW - transport packages of radioactive materials KW - Safety KW - Mechanical tests KW - Thermal tests KW - Drop test facility KW - Fire test facilities KW - Numerical calculations PY - 2010 SN - 978-0-9828171-0-0 SP - 1 EP - 11 CY - Tempe, AZ, USA AN - OPUS4-21830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Droste, Bernhard A1 - Quercetti, Thomas A1 - Müller, Karsten T1 - Durchführung experimenteller Fallprüfungen im Rahmen der mechanischen Bauartprüfung von Transportbehältern für radioaktive Stoffe T2 - Jahrestagung Kerntechnik 2010 CY - Berlin, Deutschland DA - 2010-05-04 PY - 2010 SP - 1 EP - 7 CY - Berlin AN - OPUS4-22770 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Komann, Steffen T1 - Drop test program with the half-scale model CASTOR HAW/TB2 T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Spent fuel transport cask KW - Drop test KW - Impact limiter KW - Measurement procedure PY - 2010 SP - 1 EP - 8 AN - OPUS4-22771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Müller, Karsten T1 - The unyielding impact target of the 200 tons BAM drop test facility T2 - RAMTransport 2009 CY - Manchester, England DA - 2009-05-12 PY - 2009 AN - OPUS4-20955 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Musolff, André A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Nakagami, Motonori A1 - Komatsuki, Seiji A1 - Fujisawa, Kyosuke T1 - Disposal Container Safety Assessment - Drop Tests with a "YOYUSHINDO-DISPOSAL" Waste Container onto a Concrete Target T2 - Waste Management Symposia 2010 CY - Phoenix, AZ, USA DA - 2010-03-07 PY - 2010 AN - OPUS4-20966 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Droste, Bernhard A1 - Musolff, André A1 - Müller, Karsten A1 - Quercetti, Thomas T1 - Drop and fire testing of spent fuel and HLW transport casks at 'BAM test site technical safety' N2 - BAM, as a competent German government institute for the mechanical and thermal testing of radioactive material transport and storage containers, operates unique drop and fire test facilities for experimental investigations on the open air BAM Test Site Technical Safety. To be able to perform even drop tests with full scale spent fuel or HAW casks (i.e. the German CASTOR cask designs), BAM constructed in 2004 a large drop test facility capable to handle 200 ton test objects, and to drop them onto a steel plate covered unyielding target with a mass of nearly 2600 ton. Drop test campaigns of the 181 ton GNS CONSTOR V/TC, the 129 ton MHI MSF-69BG and a 1:2 scale model of the GNS CASTOR HAW28M (CASTOR HAW/TB2) have been performed since then. The experimental BAM drop testing activities can be supported also by drop testing of smaller packages (up to 2 ton) in an in-house test facility and by dynamic, guided impact testing of package components and material specimen inside a new drop test machine. In May 2008, a new modern fire test facility was put into operation. The facility provides two test stands fired with liquid propane. Testing in every case has to be completed by computational investigations, where BAM operates appropriate finite element modelling on appropriate computer codes, e.g. ABAQUS, LS-DYNA, ANSYS and other analytical tools. KW - Package testing KW - Drop testing KW - Fire testing KW - Regulations PY - 2011 U6 - https://doi.org/10.1179/1746510912Y.0000000002 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 22 IS - 4 SP - 200 EP - 205 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-26691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Musolff, André A1 - Müller, Karsten T1 - Instrumented Measurements on Radioactive Waste Disposal Containers During Experimental Drop Testing T2 - ICEM 2011 - 14th International Conference on Environment Remediation and Radioactive Waste Management CY - Reims, France DA - 2011-09-25 PY - 2011 AN - OPUS4-26952 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Musolff, André A1 - Müller, Karsten T1 - Instrumented measurements on radioactive waste disposal containers during experimental drop testing N2 - In context with disposal container safety assessment of containers for radioactive waste the German Federal Institute for Materials Research and Testing (BAM) performed numerous drop tests in the last years. The tests were accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The instrumentation of a specimen is an important tool to evaluate its mechanical behavior during impact. Test results as deceleration-time and strain-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of calculations based on finite-element methods. Strain gauges are useful to determine the time dependent magnitude of any deformation and the associated stresses. Accelerometers are widely used for the measuring of motion i.e. speed or the displacement of the rigid cask body, vibration and shock events. In addition high-speed video technique can be used to visualize and analyze the kinematical impact scenario by motion analysis. The paper describes some selected aspects on instrumented measurements and motion analysis in context with low level radioactive waste (LLW) container drop testing T2 - ICEM 2011 - 14th International Conference on environmental remediation and radioactive waste management CY - Reims, France DA - 25.09.2011 KW - Drop test KW - Radioactive KW - Disposal container KW - Instrumented measurements PY - 2011 U6 - https://doi.org/10.1115/ICEM2011-59142 SP - 929 EP - 938 AN - OPUS4-27044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nakagami, M. A1 - Quercetti, Thomas A1 - Komatsuki, S. A1 - Fujisawa, K. A1 - Nishio, T. A1 - Musolff, André A1 - Müller, Karsten A1 - Droste, Bernhard T1 - Waste container drop tests onto a concrete target N2 - The paper presents technical details of the drop test performance as well as some experimental results of tests carried out with the Japanese 'Yoyushindo-disposal' waste container for intermediate depth disposal. The tests were accompanied by various metrology to collect data as basis for safety assessment. T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Waste container KW - Drop test KW - Concrete target PY - 2010 SP - 1 EP - 8 (Paper 367) AN - OPUS4-27045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Wille, Frank T1 - Temperature and Heat Flux Measurements in Fire Testing N2 - Packages for the transport of Spent Nuclear Fuel and high active radioactive waste are designed to withstand severe accidents. Specific mechanical and thermal tests are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials in order to cover these hypothetical severe accidents. The thermal test mainly consists of a 30 minute fully engulfing fire. Components such as the package impact limiters can lead to supplementary energy release during the thermal test as they might continue burning after the fire phase. Local heat flux into the package can occur. Measurement of heat flux into the package is of importance to evaluate component temperatures and review their acceptance. The usability of heat flux sensors and temperature measurement equipment has to be tested to apply them in impact limiter fire testing. Further questions arise such as :“Is the infrared camera a useful tool to determine heat flux at the boundary surface?” T2 - Technical Exchange IRSN – BAM Transport & Storage of Packages for Radioactive Material CY - Berlin, Germany DA - 08.09.2021 KW - Heat flux sensor PY - 2021 AN - OPUS4-55659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Sterthaus, Jens T1 - Package design assessment aspects of gaps between content and lid N2 - Type B(U) packages for the transport of radioactive material have to withstand accident conditions of transport defined in the regulations of the IAEA International Atomic Energy Agency in form of different mechanical (drop) tests with a subsequent thermal test. According to the regulatory requirements the orientation of the package in drop tests shall be such to cause the most damaged state in the components performing the safety functions. For the package lid system a 9-m drop onto the unyielding target with lid side downwards is often the most damaging orientation. The impact loads acting on the lid in this orientation result mainly from interaction between lid and internal content. In case of a movable content its impact onto the inner side of the lid can cause additional load peaks on the lid and the lid bolts. The intensity of the internal collision depends on the position of content relating to lid at the time of package first contact with target. Due to physical limitations an axial gap, which could be set in “pre-drop” configuration of package or which could spontaneously appear during the drop test, usually does not cover the maximum size possible in specific package design. In this context, the combination of drop tests with post-test analysis can be helpful to better estimate the effect of internal impact. The paper summarized some aspects of this issue based on the BAM experience in the design assessment of Type B(U) transport packages. Additionally the paper shall support applicants in German approval procedures to reduce rounds of questions and ensure delivery of reliable safety case documents to the authorities. International discussions of this issue at the IAEA and a joint proposal by France and Germany to improve Advisory Material text will be introduced. T2 - 18th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - Lid behavior KW - Transport package KW - Secondary impact KW - Inventaraufprall KW - Fallprüfung PY - 2016 SP - 1 EP - 10 AN - OPUS4-37548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quercetti, Thomas A1 - Ballheimer, Viktor A1 - Droste, Bernhard A1 - Müller, Karsten T1 - Internal cask content collisions during drop test of transport casks for radioactive materials N2 - In transport casks for radioactive materials, significantly large axial and radial gaps between cask and internal content are often present because of certain specific geometrical dimensions of the content (e.g. spent fuel elements) or thermal reasons. The possibility of inner relative movement between content and cask will increase if the content is not fixed. During drop testing, these movements can lead to internal cask content collisions, causing significantly high loads on the cask components and the content itself. Especially in vertical drop test orientations onto a lid side of the cask, an internal collision induced by a delayed impact of the content onto the inner side of the lid can cause high stress peaks in the lid and the lid bolts with the risk of component failure as well as impairment of the leak tightness of the closure system. This paper reflects causes and effects of the phenomenon of internal impact on the basis of experimental results obtained from instrumented drop tests with transport casks and on the basis of analytical approaches. Furthermore, the paper concludes the importance of consideration of possible cask content collisions in the safety analysis of transport casks for radioactive materials under accident conditions of transport. KW - Drop test KW - Cask KW - Internal collision KW - Transport KW - Radioactive material PY - 2013 U6 - https://doi.org/10.1179/1746510913Y.0000000032 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 24 IS - 2 SP - 75 EP - 82 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-31306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Musolff, André A1 - Droste, Bernhard T1 - Quality assurance requirements for mechanical test campaigns of packagings N2 - A management system based on international, national or other standards acceptable to the competent authority shall be established and implemented for all activities including design, manufacture, testing, documentation, use, maintenance, inspection in accordance with IAEA SSR-6. Hereby, quality assured testing and documentation can substantially contribute to the demonstration of package design compliance with the regulations. Nowadays, a drop test campaign within the approval process of packages for radioactive materials can be a very complex and extensive project including various test and measurement techniques. On this basis of procedures and documents the experimental tests of packages and containers are performed with quality proofed results and a high reliability. A complete traceability and direct transferability of package design test results can give particular importance to the type approval procedure. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Quality assurance KW - Packaging KW - Drop test PY - 2013 SP - Paper 181, 1 EP - 7 PB - Omnipress AN - OPUS4-30493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Ballheimer, Viktor A1 - Droste, Bernhard A1 - Müller, Karsten T1 - Internal cask content collisions during drop test of transport casks for radioactive materials T2 - 17th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2013) CY - San Francisco, CA, USA DA - 2013-08-18 PY - 2013 AN - OPUS4-31555 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Gründer, Klaus-Peter T1 - Experimental testing of impact limiters for RAM packages under drop test conditions N2 - In context with new cask designs and their approval procedure, the experimental testing of impact limiters under drop test conditions becomes more and more important in order to assess the damage mechanics behaviour and safety margins for validation reasons. In recent years, various designs of impact limiters have been tested by the Federal Institute for Materials Research and Testing within specific component testing and particularly with regard to type B package design approval procedures. The paper focuses on the experimental realisation of impact limiter tests and presents implemented measurement techniques to determine the amount of deformation and to explain the impact behaviour by means of photogrammetric metrology and three-dimensional fringe projection method, high speed motion analysis and adjusted deceleration measurements. T2 - PATRAM 2013 - 17th International symposium on the packaging and transportation of radioactive materials CY - San Francisco, CA, USA DA - 18.08.2013 KW - Drop test KW - Impact limiters KW - RAM packages KW - Measurement methods PY - 2013 SP - 1 EP - 9 PB - Omnipress AN - OPUS4-31040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Droste, Bernhard A1 - Müller, Karsten A1 - Gründer, Klaus-Peter T1 - Experimental investigation of RAM packages impact limiters - 14256 N2 - In context with new cask designs and their approval procedure the experimental testing of impact limiters under drop test conditions becomes more and more important in order to assess the damage mechanics behavior and safety margins for validation reasons. In recent years various designs of impact limiters have been tested by the Federal Institute for Materials Research and Testing (BAM) within specific component testing and particularly with regard to type B package design approval procedures. The paper focuses on the experimental realization of impact limiter tests and presents implemented measurement techniques to determine the amount of deformation and to explain the impact behavior by means of photogrammetric metrology and 3-d fringe projection method, high-speed motion analysis and adjusted deceleration measurements. T2 - WM2014 Conference CY - Phoenix, Arizona, USA DA - 02.03.2014 KW - Drop test KW - Impact limiters KW - RAM packages KW - Measurement methods PY - 2014 SN - 978-0-9836186-3-8 SP - Paper 14256, 1 EP - 10 AN - OPUS4-31050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Musolff, André A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Nakagami, M. A1 - Komatsuki, S. A1 - Fujisawa, K. A1 - Nishio, T. T1 - Waste container drop tests onto a concrete target. T2 - PATRAM 2010, 16th International Symposium on the Packaging and Transport of Radioactive Materials CY - London, England DA - 2010-10-03 PY - 2010 AN - OPUS4-22938 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Melnik, Nauka A1 - Droste, Bernhard T1 - Impact target characterisation of BAM drop test facility N2 - BAM safety related research of containers for radioactive material focuses on advanced mechanical safety assessment methods for verification of the structural integrity and leak tightness under normal conditions of transport and hypothetical accident conditions during transport and storage. An essentially unyielding target with a rigid surface is required for impact tests performed for package approval according to IAEA regulations. In addition to specification of a target, e.g. with a combined mass more than 10 times that of the specimen for drop tests, unyielding target characteristics have been investigated with various package designs and different impact tests. The unyielding target of the BAM drop test facility, a reinforced concrete block together with an embedded and anchored mild steel plate, provides relatively large mass and stiffness with respect to the packages being tested. For monitoring reasons accelerometers and strain gauges are embedded in the concrete block of the foundation at several positions. Additionally, dynamic impact responses like vibrations and rigid body motion can be measured by seismic accelerometers. The mechanical characterisation of the target's rigidity is based on experimental results from various drop tests. Test containers with weights of 181 000 kg, 127 000 kg and 8010 kg hit the target with velocities up to 13·5 m s-1 in the horizontal and vertical drop positions. The rigidity of the impact target can be demonstrated with experimental results confirmed by analytical approaches. Some conclusions can be drawn about experimental testing as well as analytical calculations in order to compare impact effects. KW - Target KW - Unyielding KW - Impact KW - Drop test PY - 2009 U6 - https://doi.org/10.1179/174651008X344449 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 19 IS - 4 SP - 217 EP - 221 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-20136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Schubert, Sven T1 - Comparison of experimental results from drop testing of spent fuel package design using full scale prototype model and reduced scale model N2 - This paper presents a comparison between full scale prototype and reduced scale model drop test data in regard to similarity mechanics. Together with a current BAM research project, the paper contributes to the further development of mechanical evaluation methods for safety assessment of RAM transport and storage packages including the transferability of package impact response from reduced scale models to full scale packages. KW - Full scale KW - Reduced scale KW - Drop testing KW - Similarity PY - 2008 U6 - https://doi.org/10.1179/174651008X362575 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 19 IS - 4 SP - 197 EP - 202 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-20135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quercetti, Thomas A1 - Nakagami, M. A1 - Komatsuki, S. A1 - Musolff, André A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Fujisawa, K. T1 - Disposal container safety assessment - drop tests with 'Yoyushindo-disposal' waste container onto concrete target N2 - This paper presents technical details of the drop test performance as well as some experimental results of tests carried out with the Japanese 'Yoyushindo-Disposal' waste container for intermediate depth disposal. The drop test program comprised three single 8 m drop tests at the specimen's corner edge orientation onto a concrete slab. The slab was connected to the unyielding IAEA target of the BAM's 200 t drop test facility. The three tested specimens had masses between 20 000 and 28 000 kg depending on their content mass. The tests were accompanied by various metrology, such as strain and deceleration measurements, optical three-dimensional deformation methods, leak tightness testing and test installation for potential particle release measurements to collect a set of data for establishing a basis for safety assessment. KW - Drop test KW - Disposal container KW - Safety PY - 2010 U6 - https://doi.org/10.1179/174650910X12681251630291 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 21 IS - 3 SP - 132 EP - 141 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-22613 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nehrig, Marko A1 - Wille, Frank A1 - Quercetti, Thomas A1 - Masslowski, Jörg-Peter A1 - Droste, Bernhard A1 - Pope, R. T1 - Historical view and experiences with the crush test for light weight packages T2 - PATRAM 2010 - 16th International symposium on the packaging and transport of radioactive materials CY - London, UK DA - 2010-10-03 KW - Crush test KW - IAEA regulations KW - Type-B PY - 2010 SP - 1 EP - 8(?) AN - OPUS4-23303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Schubert, Sven T1 - Comparison of experimental results from drop testing of a spent fuel package design using a full-scale prototype model and a reduced-scale model T2 - PATRAM 2007, 15th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Miami, Florida, USA DA - 2007-10-21 KW - Drop KW - Testing KW - Experiment KW - Prototype KW - Reduced-scale KW - Full-scale PY - 2007 SP - 1 EP - 8 PB - Institute of Nuclear Materials Management AN - OPUS4-18624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Schubert, Sven T1 - Comparsion of Experimental Results from Drop Testing of a Spent Fuel Package Design Using a Full-scale Prototype Model and a Reduced-scale Model T2 - PATRAM 2007 CY - Miami, FL, USA DA - 2007-10-21 PY - 2007 AN - OPUS4-18595 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Karsten A1 - Favre, A. A1 - Hilbert, F. A1 - Quercetti, Thomas A1 - Neumeyer, Tino A1 - Weingart, Barbara T1 - Prototype testing of a protective structural packaging for 30B cylinder N2 - Three drop test campaigns have been performed with DN 30 Protective Structural Packaging (PSP) developed by DAHER NUCLEAR TECHNOLOGIES GmbH for the transport of natural, enriched and reprocessed uranium hexafluoride (up to 5 wt%) in 30B cylinders. The mechanical prototype testing is intended to demonstrate that the package DN30 complies with regulatory requirements under normal and hypothetical accident conditions of transport (NCT, ACT) relevant to IF, AF and B(U)F packages, respectively. The paper includes the results of the latest test campaign carried out in 2015-2016 at the drop test facility of BAM, Germany with new full scale prototypes of the DN30 PSP and 30B cylinders. Repetition of drop test sequences became necessary after changing to Polyisocyanurate foam as shock absorbing material with variable foam densities. Furthermore, the mechanical behavior of the UF6 content of the 30B cylinder is now simulated by a mixture of cement and steel grid as modified surrogate material; instead of small steel balls. The behavior of this new content simulation is assumed to be more realistic with respect to the properties of real UF6. T2 - PATRAM 2016, 18th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Kobe, Japan DA - 18.09.2016 KW - Drop test KW - Packaging KW - Radioactive material KW - Uranium hexafluoride PY - 2016 SP - Paper 1018, 1 EP - 11 PB - INMM CY - Deerfield, Illinois, USA AN - OPUS4-37568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Musolff, Andre A1 - Nakagami, M. A1 - Komatsuki, S. A1 - Tamaki, H. A1 - Kishimoto, J. A1 - Fujisawa, K. A1 - Nishio, T. ED - Quercetti, Thomas T1 - Experimental testing of RAM packages within Japanese German projects N2 - In context with Japanese disposal and transport container safety assessment the German Federal Institute for Materials Research and Testing (Bundesanstalt für Materialforschung und -prüfung) per-formed extensive drop test series with prototypes of RAM packages in recent years. The paper presents two cooperative projects focused on project management, testing performance and experimental results. In the first project, a full-scale prototype of a package for transport and storage of spent fuel elements with a total mass of 127,000 kg and its reduced-scale model which was similar to the prototype in both geometry and design were drop tested in 9 m and 1 m puncture tests at various drop orientations under regulatory conditions. In context with a corresponding research project the test data was used in combination with numerical methods to investigate the phenomenon of internal cask- content collisions during drop tests. Here, technological gaps between basket or radioactive content and cask body or primary lid can be a reason for significant high dynamic loadings of cask components and its internals due to additional impact interactions in the cask cavity caused by inner relative movement between content and cask. Further investigations were carried out in the field of similarity mechanics comparing experimental drop test data of the full-scale prototype and reduced-scale model in regard to the transferability of package impact response from reduced-scale models to full-scale packages. In the second project, drop tests with a waste container for intermediate depth disposal were per-formed being contracted by Kobe Steel, Ltd. and a consortium of Japanese electric power plant com-panies. The drop test program comprised three single 8-m drop tests in a specimen’s corner edge orientation. For drop tests according to legal regulations for interim storage or final disposal it is often necessary to use a target which represents the real ground of the storage facility. In such cases the container hits directly onto a well-defined concrete slab on top of the IAEA target. Here, the directly impact target for the drop tests were concrete slabs manufactured in Japan and connected by mortar to the impact pad of the unyielding IAEA target. KW - Drop testing KW - Package PY - 2016 SP - Paper 1043, 1 EP - 13 CY - Kobe, Japan AN - OPUS4-37557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Musolff, Andre T1 - Experimental testing of RAM packages within Japanese German projects N2 - The paper presents two cooperative projects focused on project management, testing performance and experimental results. T2 - 18th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - Drop testing KW - Package PY - 2016 AN - OPUS4-37558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Droste, Bernhard A1 - Gründer, Klaus-Peter T1 - Experimental testing of impact limiters for RAM packages under drop test conditions N2 - In context with new cask designs and their approval procedure, the experimental testing of impact limiters under drop test conditions becomes more and more important in order to assess the damage mechanics behaviour and safety margins for validation reasons. In recent years, various designs of impact limiters have been tested by the Federal Institute for Materials Research and Testing within specific component testing and particularly with regard to type B package design approval procedures. The paper focuses on the experimental realisation of impact limiter tests and presents implemented measurement techniques to determine the amount of deformation and to explain the impact behaviour by means of photogrammetric metrology and three-dimensional fringe projection method, high speed motion analysis and adjusted deceleration measurements. KW - Experimental KW - Drop test KW - Impact limiter KW - Close range photogrammetry PY - 2014 U6 - https://doi.org/10.1179/1746510915Y.0000000003 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 3-4 SP - 133 EP - 138 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-33776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Sterthaus, Jens T1 - Consideration of gaps between content and lid within package design assessment N2 - Type B(U) packages for the transport of radioactive material have to withstand accident conditions of transport defined in the regulations of the International Atomic Energy Agency in form of different mechanical (drop) tests with a subsequent thermal test. According to the regulatory requirements the orientation of the package in drop tests shall be such to cause the most damaged state in the components performing the safety functions. For the package Iid system a 9 m drop onto the unyielding target with Iid side downwards is often the most damaging orientation. The impact Ioads acting on the Iid in this orientation result mainly from interaction between Iid and internal content. In case of a movable content its impact onto the inner side of the Iid can cause additional Ioad peaks on the Iid and the Iid bolts. The intensity of the internal collision depends on the position of content relating to Iid at the time of package first contact with target. Due to physical limitations an axial gap, which could be set in "pre-drop" configuration of package or which could spontaneously appear during the drop test, usually does not cover the maximum size possible in specific package design. In this context, the combination of drop tests with post-test analysis can be helpful to better estimate the effect of internal impact. The paper summarizes some aspects of this issue based on the BAM experience in the design assessment of Type B(U) transport packages. Additionally the paper shall support applicants in German approval procedures to reduce rounds of questions and ensure delivery of reliable safety case documents to the authorities. T2 - RAMTRANS 2015 - 10th International conference on radioactive materials transport and storage CY - Oxford, UK DA - 19.05.2015 KW - Transport packages KW - Accident conditions of transport KW - Internal impacts KW - Lid/content interaction KW - Radioactive material PY - 2015 SP - 1 EP - 10 AN - OPUS4-33419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, André A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Impact Analysis of RAM Packages under Kinematic Aspects N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - PATRAM 2016 CY - Kobe, Japan DA - 18.09.2016 KW - RAM packages KW - Drop test KW - Impact KW - Radioactive PY - 2016 UR - http://www.patram2016.org/ SP - Paper 1030, 1 AN - OPUS4-38859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Johnson, Mark A1 - Tait, Trevor A1 - Tso, Chi-Fung A1 - Izatt, Conrad ED - ASME, T1 - Drop testing of a container for the storage. transport and disposal of intermediate level waste N2 - Impact tests were performed, as part of a corresponding container’s substantiation, during design development of a shielded container. The container will be used for storage, transport, and disposal of intermediate level waste in the UK. The mechanical test program comprised a 9m free drop test onto an unyielding target in a container long lid edge down orientation at ambient conditions. Further, a 0,5m free drop test onto a punch target was performed. Here, the container was orientated with the lid downwards in a way that the punch, a mild steel bar, impacts a filter lid. The test specimen was instrumented with strain gauges and accelerometers for the drop tests. Transient strains at selected points of the inner and outer container walls, at the shielding lid, as well as at the lid bolts were measured during the container’s impact. Furthermore, decelerations of the container body, container lid, and the skip were measured. The complex geometrical changes of the container due to impact were determined by optical 3d- deformation measures using the projected fringes method in combination with multi-image photogrammetry. This paper summarizes the performance of the drop tests and various drop test results in context with the design development as well as aspects regarding the associated Finite Element (FE) analyses and post-test evaluation. KW - Drop testing KW - Container KW - Intermediate level waste PY - 2017 SN - 978-0-7918-5802-8 VL - 7 SP - Article UNSP V007T07A036, 1 EP - 7 CY - New York AN - OPUS4-44047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Musolff, Andre A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Bartholmai, Matthias T1 - Kinematic aspects of RAM packages drop tests N2 - BAM is the German Federal Institute for Materials Research and Testing and the competent authority for mechanical and thermal safety assessment of transport packages for spent fuel and high level waste. In context with safety assessment of RAM packages BAM performed numerous drop tests in the last decades. The tests were mostly accompanied by extensive and various measurement techniques especially by instrumented measurements with strain gages and accelerometers. The procedure of drop testing and the resulting measurement analysis are the main methods to evaluate the safety against mechanical test conditions. Measurement techniques are dedicated to answer questions in regard to the structural integrity of a RAM package, the mechanical behavior of the prototype as well as of its content under impact conditions. Test results like deceleration-time functions constitute a main basis for the validation of assumptions in the safety analysis and for the evaluation of numerical calculations. In this context the adequate selection of accelerometers and measurement systems for the performance of drop tests is important. Therefore it is not only necessary to find suitable positions for the accelerometers at the test specimens, but also to consider technical boundary conditions as e.g. temperature. T2 - 2018 WM Symposia CY - Phoenix, AZ, USA DA - 18.03.2018 KW - Drop KW - Test KW - Measurement KW - Analysis KW - Prototyp PY - 2018 SP - Paper 18149, 1 EP - 12 AN - OPUS4-44872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Müller, Karsten A1 - Tait, T. A1 - Johnson, M. A1 - Tso, C.-F. A1 - Izatt, C. T1 - Drop testing of a container for the storage, transport and disposal of intermediate level waste N2 - Impact tests were performed, as part of a corresponding container’s substantiation, during design development of a shielded container proposed for use at Sellafield for waste retrieval from the First Generation Magnox Storage Pond (FGMSP) in the UK. The mechanical test program comprised a 9m free drop test onto an unyielding target in a container long lid edge down orientation at ambient conditions. Further, a 0,5m free drop test onto a punch target was performed. Here, the container was orientated with the lid downwards in a way that the punch, a mild steel bar, impacts a filter lid. The test specimen was instrumented with strain gauges and accelerometers for the drop tests. Transient strains at selected points of the inner and outer container walls, at the shielding lid, as well as at the lid bolts were measured during the container’s impact. Furthermore, decelerations of the container body, container lid, and the skip were measured. The complex geometrical changes of the container due to impact were determined by optical 3d- deformation measures using the projected fringes method in combination with multi-image photogrammetry. This paper summarizes the performance of the drop tests and various drop test results in context with the design development as well as aspects regarding the associated Finite Element (FE) analyses and post-test evaluation. T2 - WM2018 Conference CY - Phoenix, Arizona, USA DA - 18.03.2018 KW - Drop testing KW - Container PY - 2018 AN - OPUS4-44859 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Wille, Frank T1 - Design assessment by bam of a new package design for the transport of snf from a german research reactor N2 - For disposal of the German research reactor of the Technical University Munich FRM II a new transport and storage cask design was under approval assessment by the German authorities. The Bundesanstalt für Materialforschung und -prüfung (BAM) assessed the mechanical and thermal package safety and performed drop tests. The activity release approaches and subjects of quality assurance and surveillance for manufacturing and operation of the package were assessed by BAM as well. The cask body is made of ductile cast iron and closed by two bolted lid systems with metal seals. The material of the lids is stainless steel. On each end of the cask a wood-filled impact limiter is installed to reduce impact loads to the cask under drop test conditions. In the cavity of the cask a basket for five spent fuel assemblies is arranged. For the safety case a combination of experimental testing and analytical/numerical calculations were applied. In total, four drop tests were carried out at the BAM large drop test facility. Two tests were carried out as a full IAEA drop test sequence consisting of a 9m drop test onto an unyielding target and a 1m puncture bar drop test. The other two drop test were performed as single 9m drop tests and completed by additional analyses for considering the effects of an IAEA drop test sequence. The main objectives of the drop tests were the investigation of the integrity of the package and its safety against release of radioactive material as well as the test of the fastening system of the impact limiters. Furthermore, the acceleration and strain signals measured during the tests were used for the verification of Finite-Element-Analysis (FEA) used for the safety analysis of the package design. The finite-element models incorporated in the package design safety report include the cask body, the lid system, the inventory and the impact limiters with the fastening system. In this context special attention was paid to the modeling of the encapsulated wood-filled impact limiters. Additional calculations using the verified numerical models were done by the applicant and assessed by BAM to investigate e.g. the brittle fracture of the cask body made of ductile cask iron within the package design approval procedure. This paper describes the package design assessment from the view of the competent authority BAM including the applied assessment strategy, the conducted drop tests and the additional calculations by using numerical and analytical methods. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Numerical modelling KW - Drop test KW - Assessment method KW - Ductile cast iron KW - Package design KW - Experimental testing PY - 2019 SP - Paper 1176, 1 AN - OPUS4-49054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Borch, Jörg-Peter T1 - Fire tests of RAM packages and containers under high thermal load N2 - Fire testing is an essential part of the hypothetical, cumulative mechanical and thermal test conditions that shall guarantee package safety in severe accidents. Within regulatory approval of transport or storage packages for radioactive material, specific thermal load tests are required in accordance to licensing conditions and international standards, respectively. The specifications of these thermal tests are based on test conditions with equivalent heat input to that of a hydrocarbon fuel fire. In the past, light heating oil, diesel or kerosene was mostly used as the fuel to generate the pool fire. In accordance with IAEA regulations for a fire in an accident, the temperature of 800 °C over a period of 30 minutes must be fulfilled. Furthermore, the delivery acceptance criteria for containers in nuclear waste repositories could reach for example average temperatures of 800 °C during a period of one hour in combination with defined requirements on activity release. BAM as a scientific and technical German federal government institute operates an open air Technical Safety Test Site for experimental investigations of dangerous good and its containment. In this areal a large fire test facility is under operation. Liquid Propane is utilized as fuel which is pumped via pipelines from a central storage tank to the fire exposed test facility areas. In the ring burner system, the gas is released from nozzles, and ignited by ignition burners. The paper includes examples of fire test performance with prototypes of a transport package and a storage container, respectively. In preparation of the thermal load, calorimeter tests have been performed using test specimens of appropriate size and behavior. For the fire test scenario is demonstrated that the IAEA thermal test requirements are fulfilled. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - IAEA Thermal Test KW - Thermal package testing KW - Transport package KW - Container for radioactive waste PY - 2019 SP - Paper 1298, 1 EP - 6 AN - OPUS4-49093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Wille, Frank T1 - Mechanical and thermal assessment by BAM of a new package design for the transport of SNF from a german research reactor N2 - For disposal of the research reactor of the Technical University Munich FRM II a new transport and storage cask design was under approval assessment by the German authorities on the basis of International Atomic Energy Agency (IAEA) requirements. The cask body is made of ductile cast iron and closed by two bolted lid systems with metal seals. The material of the lids is stainless steel. On each end of the cask the wood-filled impact limiters are installed to reduce impact loads to the cask under drop test conditions. In the cavity of the cask a basket for five spent fuel elements is arranged. This design has been assessed by the Bundesanstalt für Materialforschung und -prüfung (BAM) in view to the mechanical and thermal safety analyses, the activity release approaches, and subjects of quality assurance and surveillance for manufacturing and operation of the package. For the mechanical safety analyses of the package a combination of experimental testing and analytical/numerical calculations were applied. In total, four drop tests were carried out at the BAM large drop test facility. Two tests were carried out as a full IAEA drop test sequence consisting of a 9m drop test onto an unyielding target and a 1m puncture bar drop test. The other two drop tests were performed as single 9m drop tests and completed by additional analyses for considering the effects of an IAEA drop test sequence. The main objectives of the drop tests were the investigation of the integrity of the package and its safety against release of radioactive material as well as the test of the fastening system of the impact limiters. Furthermore, the acceleration and strain signals measured during the tests were used for the verification of finite-element (FE) models applied in the safety analysis of the package design. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Mechanik KW - radioaktives Material KW - Transportbehälter KW - Antragsverfahren KW - Zulassungen KW - Typ-B Versandstück KW - Thermik PY - 2020 VL - 2020 SP - 1 EP - 7 PB - ASME CY - New York AN - OPUS4-51103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Outcomes of three large scale fire reference tests conducted in BAM fire test facility N2 - Packages for the transport of high-level radioactive material are designed to withstand severe accidents. Hypothetical severe accident conditions are defined in the IAEA Regulations for the Safe Transport of Radioactive Materials. One of these accident conditions is the thermal test, mainly consisting of a 30 minute fully engulfing 800°C pool fire or an equally severe fire test. The heat fluxes into the package depend substantially on the fire characteristics and the Surface temperature of the package. Fire tests can be performed at BAM on a propane gas fire test facility. In order to investigate the heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for multiple use. The package represented the outer geometry of a specific transport cask for radioactive waste. The fire reference package is a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 1500 mm and a diameter of 1050 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Three open-air fire tests were performed in the BAM propane gas fire test facility. The flames exposure time period varied slightly for the fire tests. The wind direction as well as the wind Speed were measured and changed between and during the tests. Test stand parameters such as wind shield location and propane gas volume flow were chosen constant for the three tests. The locally measured fire reference package steel sheet temperatures were used for the calculation of heat fluxes as function of time and surface temperature. The measured temperatures allowed further calculations. In a first approach effective fire characteristics of the propane gas fire, including the flame temperature, the fire convection coefficient and a Radiation exchange coefficient mathematically describing the determined average heat flux over the surface temperature were calculated. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Fire KW - Testing KW - Large scale testing KW - Calorimeter KW - Heat flux PY - 2020 SP - 1 EP - 9 PB - ASME CY - New York AN - OPUS4-51192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad ED - Baraldi, P. ED - Di Maio, F. ED - Zio, E. T1 - Safety Evaluation of a Package for Radioactive Waste by Full-Scale Drop Testing N2 - As part of the evaluation of a package for the safe transport of radioactive waste the regulations of the IAEA International Atomic Energy Agency shall be fulfilled. The regulations define requirements for the package and specify mechanical and thermal test conditions. Different methods are allowed for the test performance to demonstrate compliance with the regulations. Next to calculational approaches and the use of models of an appropriate scale, the performance of full-scale testing with prototype packages respectively full-scale models is applied. The use of full-scale models has several advantages within the complete safety assessment procedure for a transport package approval. Scaling and corresponding similarity questions don’t have to be considered, additional material investigations can be limited and analyses to transfer test results to the original package design are reduced in number and complexity. Additionally, experience for future serial design procedures can be built up during manufacturing and assembling of the test model. BAM operates different drop and fire test facilities south of Berlin, Germany. BAM has started to perform a drop test campaign with a full-scale model of 120 metric tons weight for a transport package approval procedure. The paper describes experience with test preparation, drop performance and additional analyses. The measurement concept is explained and test goals regarding the package safety assessment and evaluation of safety margins are introduced. T2 - 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL2020 PSAM15) CY - Online meeting DA - 01.11.2020 KW - Slap-down KW - Transport safety KW - Package KW - Drop test KW - Similarity KW - FEA KW - Radioactive waste PY - 2020 UR - https://www.rpsonline.com.sg/proceedings/esrel2020/html/3809.xml SN - 987-981-14-8593-0 SP - Paper 3809,1 EP - 8 PB - Research Publishing Services CY - Singapore AN - OPUS4-50981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Musolff, André T1 - Historical and Technical Facts of the Drop Test Facility at the BAM Technical test Side Horstwalde T2 - International Symposium "Non-Destructive Testing in Civil Engineering" CY - Berlin- Germany DA - 2015-09-15 PY - 2015 AN - OPUS4-34447 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Package testing of a dual purpose cask for SNF from German research reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations [1]. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations [1]. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report [2]. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively. T2 - IHLRWM2019 CY - Knoxville, TN, USA DA - 14.04.2019 KW - Drop test KW - Package testing KW - Dual purpose cask PY - 2019 SN - 978-0-89448-761-3 VL - 2019 SP - paper 27283, 1 EP - 7 PB - ANS AN - OPUS4-50619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Package testing of a dual purpose cask for SNF from german research reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively. T2 - IHLWM 2019 CY - Knoxville, TN, USA DA - 14.04.2019 KW - Package testing KW - Drop test PY - 2019 AN - OPUS4-50620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Package testing of a dual purpose cask for SNF from german research reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively. T2 - Workshop ORNL/BAM CY - Oak Ridge National Laboratory, TN, USA DA - 11.04.2019 KW - Package testing KW - Drop test PY - 2019 AN - OPUS4-50621 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Drop Testing of a New Package Design for the Transport of SNF from German Research Reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the package approval procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according with the IAEA Transport Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a bolted lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical drop test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture bar drop test followed the horizontal drop test to consider an IAEA-drop test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated up to +80°C. The tests were conducted onto an unyielding target, fulfilling the IAEA requirements. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3D- measurements. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport and especially to the verification of the dynamic finite-element model of the package used in the package design safety report. T2 - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - SNF KW - Drop testing KW - New package design PY - 2019 SP - Paper 19-A-1142,1 EP - 10 AN - OPUS4-50622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Drop Testing of a New Package Design for the Transport of SNF from German Research Reactors N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the package approval procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according with the IAEA Transport Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a bolted lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical drop test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture bar drop test followed the horizontal drop test to consider an IAEA-drop test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated up to +80°C. The tests were conducted onto an unyielding target, fulfilling the IAEA requirements. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3D- measurements. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport and especially to the verification of the dynamic finite-element model of the package used in the package design safety report. T2 - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - SNF KW - Drop testing KW - New package design PY - 2019 AN - OPUS4-50623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Wille, Frank T1 - Fire reference test for IAEA package thermal testing in a propane gas fire test facility N2 - Packages for the transport of radioactive material shall withstand severe accidents. Therefore, the IAEA Regulations define different test scenarios to cover severe hypothetical accident conditions. One of these tests defined in detail is the thermal test, mainly consisting of a 30 minute fully engulfing 800 °C pool fire or an equally severe fire test. The heat fluxes into the package are of significant importance and depend substantially on the fire characteristics and the surface temperature of the package. In order to investigate the heat fluxes over a wide range of surface temperatures during a propane gas fire test and to get information about local fire impact a fire reference package, representing the outer geometry of a specific type of transport cask for radioactive waste, was designed. A closed steel sheet cylinder with a wall thickness of 10 mm was chosen as fire reference package. The cylinder was filled with refractory insulation material and instrumented with thermocouples distributed all over the cylinder. The local steel sheet temperatures measured allow the determination of local as well as global heat fluxes as a function of time and surface temperature. With this fire reference package three open-air propane gas fire tests were performed at BAM’s open air fire test stand. The flame exposure time period was changed for the different fire tests. Furthermore, the wind conditions changed between and during the tests. Test stand parameters like wind shield location and propane gas volume flow were chosen constant for the three tests. The test results were used to determine the changes of heat flux into the fire reference package in relation to the package surface temperature. This data also allows the calculation of local characteristics of the propane gas fire as there are the flame temperature, the fire convection coefficient and the radiation exchange coefficient in a first approach. The recently conducted tests provide an initial picture of local fire characteristics of the propane gas fire test facility. The test shows that the propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Fire test KW - Propane gas KW - Calorimetric test KW - IAEA fire testing PY - 2019 SP - Paper 1141, 1 EP - 10 AN - OPUS4-48840 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herrmann, Ralf A1 - Hille, Falk A1 - Said, Samir A1 - Sterthaus, Jens A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Paffenholz, J.-A. A1 - Baeßler, Matthias ED - Papadrakakis, M. ED - Fragiadakis, M. ED - Papadimitriou, C. T1 - Implementing a Structural Health Monitoring system using digital models of the BAM large drop test facility in Horstwalde N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) full scale specimens for nuclear transport and storage containers (casks) are tested for their structural integrity in a series of drop tests on the Test Site Technical Safety in Horstwalde, 50 km south of Berlin. These drop tests cause a major stress not only on the casks, but also on the steel tower structure of the test facility, itself. The load pattern makes the structure very interesting for detailed investigation. The focus of the monitoring lies on the bolted joints of the flange connections that are a typical connection for cylindrical elements if welding is technical or economical unfavorable. The definition of the monitoring takes was done by investigating the existing documents and inspection results accompanied by building an initial digital representation of the structure, consisting of two finite element (FE) models and a geometrical 3D point cloud representation. As a first step the structures behavior during static and dynamic loading was analyzed using measurement data and an updated numerical FE Model. The idea behind is to use models for a digital planning and operation/evaluation of the structural health monitoring. A static FE simulation and a dynamic FE simulation are generated, to investigate how the structure behaves under the load conditions. T2 - XI International Conference on Structural Dynamics (EuroDyn 2020) CY - Online meeting DA - 23.11.2020 KW - Structural Health Monitoring KW - Drop Tests KW - System Identification KW - Digital Models KW - BIM PY - 2020 UR - https://generalconferencefiles.s3-eu-west-1.amazonaws.com/eurodyn_2020_ebook_procedings_vol1.pdf SN - 978-618-85072-0-3 VL - 1 SP - 1293 EP - 1304 PB - Institute of Structural Analysis and Antiseismic Research CY - Athen AN - OPUS4-51592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad T1 - Full-scale drop testing with a heavy-weight package for radioactive waste N2 - Packages for the transport of radioactive materials shall fulfil the requirements of the IAEA regulations for the safe transport. The requirements define mechanical and thermal test conditions including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Different methods can be used for safety demonstration showing compliance with the regulations. The central part of a safety demonstration which is presented in this paper was a comprehensive drop test program with a full-scale model of a transport package accompanied by pre- and post-test FE analyses. Using full-scale drop test models allow the benefit that similarity and scaling issues become a significant smaller issue, additional material investigations can be limited and analyses for transferring test results to the original package design are reduced. Additionally, experience for the future serial packaging manufacturing and handling procedures can be collected in a very early state of the design approval process. The pre-test finite element analyses derived and justified the drop test program consisting of several drop sequences with different drop orientations of the specimen. The performance and the results of the drop test sequences shows the manageability and the advantage e.g., in view of the direct availability of test results for the package licensing. On the other hand, the drop test performance shows the difficulties during handling and the need for additional equipment during preparation of the specimen. The package presented was intended for the transport and storage of compacted radioactive waste from reprocessing of spent nuclear fuel assemblies - designed and applied for approval by the AGC consortium. The project ended in 2021. The package design was characterized by a cask body made of a forged thick stainless-steel shell, a bolted double lid system with metallic gaskets and wood filled shock absorbers at both ends. The total mass of the entire transport package including content was 120,000 kg, the total length was about 7000 mm and the diameter approximately 3000 mm, both measures include the shock absorbers. The paper provides an insight into the performance of a full-scale drop testing campaign within the package safety evaluation and shows some selected test results. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Full-scale KW - Drop testing KW - Package KW - Radioactive waste PY - 2023 AN - OPUS4-57731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Neumann, Martin A1 - Linnemann, Konrad T1 - Full-scale drop testing with a heavy-weight package for radioactive waste N2 - Packages for the transport of radioactive materials shall fulfil the requirements of the IAEA regulations for the safe transport. The requirements define mechanical and thermal test conditions including criteria ensuring the package design’s ability to withstand severe accidents and provide a high level of technical safety. Different methods can be used for safety demonstration showing compliance with the regulations. The central part of a safety demonstration which is presented in this paper was a comprehensive drop test program with a full-scale model of a transport package accompanied by pre- and post-test FE analyses. Using full-scale drop test models allow the benefit that similarity and scaling issues become a significant smaller issue, additional material investigations can be limited and analyses for transferring test results to the original package design are reduced. Additionally, experience for the future serial packaging manufacturing and handling procedures can be collected in a very early state of the design approval process. The pre-test finite element analyses derived and justified the drop test program consisting of several drop sequences with different drop orientations of the specimen. The performance and the results of the drop test sequences shows the manageability and the advantage e.g., in view of the direct availability of test results for the package licensing. On the other hand, the drop test performance shows the difficulties during handling and the need for additional equipment during preparation of the specimen. The package presented was intended for the transport and storage of compacted radioactive waste from reprocessing of spent nuclear fuel assemblies - designed and applied for approval by the AGC consortium. The project ended in 2021. The package design was characterized by a cask body made of a forged thick stainless-steel shell, a bolted double lid system with metallic gaskets and wood filled shock absorbers at both ends. The total mass of the entire transport package including content was 120,000 kg, the total length was about 7000 mm and the diameter approximately 3000 mm, both measures include the shock absorbers. The paper provides an insight into the performance of a full-scale drop testing campaign within the package safety evaluation and shows some selected test results. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Full-scale KW - Drop testing KW - Package KW - Radioactive materials transport PY - 2023 SP - 1 EP - 10 AN - OPUS4-57732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Quercetti, Thomas A1 - Wille, Frank A1 - Gröke, Carsten A1 - Neumeyer, Tino T1 - Design assessment, approval of management systems and ageing aspects of transport packages for radioactive material not requiring competent authority approval of design N2 - Most transports of radioactive materials are carried out with packages not requiring competent authority approval of design. These encompass – in accordance with the IAEA SSR-6 regulations – packages of the classification excepted, Industrial packages Type 1, 2 and 3 and Type A packages. Currently an upsurge in number and variation of these package designs can be seen in Germany, resulting from the phase out of nuclear energy in Germany as well as e. g. increased use of radioactive material for medical purposes. A design assessment regarding the package safety is required in the international IAEA SSR-6 regulations. BAM operates facilities for the performance of all regulatory tests required such as drop towers for a wide range of package masses and dimensions, fire test, leak tightness measurements and pressure test facilities. Experiences with several package types are shown. Additionally, IAEA SSR-6 requires the establishment of a management system for design, manufacture, maintenance, and repair of the packaging as well as for the preparation, consigning, loading, carriage, unloading and receipt of the package. Relevant for Germany, BAM has published guidance material on the process of management system acceptance in the technical guide BAM-GGR 016. The requirements encompass quality management plans for the manufacturing of packages including independent manufacturing surveillance and specific instructions for operation, maintenance, and repair of packagings. Examples for management system specifics and requirements are given. Since the latest edition of the IAEA SSR-6 regulations an ageing evaluation including systematic ageing management measures are required for all kind of package types. BAM is going to update the guidance material BAM-GGR 016 to support the stakeholders with relevant information to fulfil the ageing aspect for packages not requiring competent authority approval. The paper explains how the ageing aspect may be included in the safety evaluation process and the management system measures and will give an outlook for the future guidance material. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - Typ KW - Radioactive material KW - Non-approved PY - 2023 SP - 1 EP - 8 AN - OPUS4-57703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Nehrig, Marko A1 - Musolff, André A1 - Wille, Frank T1 - R&D Activities by BAM Related to Transport Package Fire Testing N2 - Packages for the transport of radioactive material shall meet the mechanical and thermal test requirements of the International Atomic Energy Agency (IAEA) regulations for package design approval. Besides mechanical testing, the Federal Institute for Materials Research and Testing (BAM) performs thermal tests in accordance with the IAEA regulations. The thermal test includes a 30-minute 800°C fully engulfing fire. BAM continuously performs various thermal experiments for the investigation of the thermal response of packages with respect to the IAEA fire. The purpose of this paper is to give an overview of the already performed, ongoing and future physical tests and experiments of BAM in the field of thermal investigations. These research and development works shall support our competencies for the authority package design assessment. BAM operates a propane gas fire test facility. To be able to carry out comparative investigations and validity between the propane fire and the in detail prescribed pool fire test in the regulations, BAM carries out various calorimetric tests and investigates the boundary conditions of the fire with the help of fire reference packages. At the same time, we are conducting various fire scenarios with wood-filled impact limiters. Large-scale fire tests of impact limiters are carried out on a full scale as well as on a small scale. Influencing variables are investigated in particular by means of geometric changes and the consideration of artificial damages, in particular holes. In addition to propane fire as a heat source, thermal scenarios are also investigated with hydrogen as heat source and an infrared radiator system to ignite test specimens. For these numerous test arrangements, the transferability to existing and newly developed transport package designs is essential and fruitful within the review of design approvals, especially for Dual Purpose casks with a long-lasting operation time. T2 - 20th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 22) CY - Juan-Les-Pins, France DA - 11.06.2023 KW - Fire KW - Testing KW - Hydrogen KW - Wood KW - Propane KW - Heat Flux KW - Fire Reference Package KW - Radioactive Material PY - 2023 SP - 1 EP - 10 AN - OPUS4-57721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Quercetti, Thomas A1 - Gleim, Tobias A1 - Wille, Frank T1 - Evaluation of Heat Fluxes in Fire Reference Test Conducted in BAM Propane Gas Fire Test Facility N2 - Packages for the transport of intermediate- and high-level radioactive waste are designed to withstand severe accidents. The International Atomic Energy Agency (IAEA) has established specific mechanical and thermal tests. Packages for the transport of radioactive material must withstand these tests to comply with the Regulations for the Safe Transport of Radioactive Materials IAEA [IAEA (2018)]. A fire reference package was developed with the primary objective to demonstrate that the fire meets the regulatory requirements. Another aim is to characterise the boundary conditions of the actual fire as input parameters for thermo-mechanical simulations. A simple method to characterise the boundary conditions of a real steady state fire with a fire reference package is presented. The thermal test mainly consists of a 30 minute fully engulfing 800°C pool fire or an equally severe fire, such as a propane gas fire. The fire reference tests are performed prior to the actual fire test with the real package. The heat fluxes into the package depend substantially on the fire characteristics and the surface temperature of the package. To investigate local and overall heat fluxes over a wide range of surface temperatures in this test facility a fire reference package was designed for repeated use. The fire reference package presented in this paper represents the outer geometry of a small transport container for radioactive material and is used as a device in civil engineering. It is designed as a closed steel sheet cylinder with a wall thickness of 10 mm, a length of 182 mm and a diameter of 102 mm. The package was instrumented with thermocouples and filled with heat resistant insulation material. Open-air fire tests were performed in a BAM propane gas fire test facility with the fire reference package. The measured temperatures are used to determine the changes of heat fluxes into the fire reference package in relation to the package surface temperature. The calculated heat fluxes allow its fitting to express the thermal exposure as simple mathematical boundary condition. Therefore, in a first approach, fire properties such as adiabatic surface temperature (AST) as proposed by Wickström et al. (2007), convection coefficient and emissivity are determined mathematically fitting the heat flux development presented in this paper. The evaluated results provide an initial picture of local fire characteristics of the conducted propane gas fire and are a further development of previous works from Feldkamp et al. (2020). The results can be used in thermal and thermo-mechanical models to simulate the load on the real transport package in fire. The test shows that the examined propane gas fire covers the IAEA-fire over a wide range of surface temperatures with the chosen test stand parameters. T2 - SMiRT 27 (27th conference on Structural Mechanics in Reactor Technology) CY - Yokohama, Japan DA - 03.03.2024 KW - Fire KW - Propane KW - Heat Flux KW - Fire Reference PY - 2024 SP - 1 EP - 10 PB - IASMiRT AN - OPUS4-59679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wille, Frank A1 - Quercetti, Thomas A1 - Scheidemann, Robert T1 - Test Facilities for Radioactive Materials Transport and Storage Packagings at BAM N2 - BAM acts as authority and for service in safety assessment of packages for transport and storage of radioactive materials. We offer extensive test capabilities and application of analytical methods for design verification and simulation for all types of packages for the transport and storage of radioactive materials according with the international IAEA Regulations for the safe transport and for national storage acceptance criteria. BAM operates several test facilities for drop and stacking testing, leak testing and thermal testing. The large drop test tower allows dropping full-scale specimens up to 200,000 kg in any drop orientation as requested. The comprehensive test facilities combined with long-term experience, newest equipment and measurement devices according to the latest state-of-the-art technology ensures realisation of complex test campaigns for package safety evaluation. Beyond that, non-destructive and destructive material test devices and experts are available. Equipment and application of all kinds of typical measurement categories can be offered for testing campaigns. In recent years we performed testing of full-scale type B package models with complex handling and preparation procedures. The results were contributed for different package design approval procedures. Type A packages mainly designed for medical related transport purposes, were continuously tested according to the transport regulations over recent years as well. Moreover, we work on research topics with relevance to package safety. The mechanical behaviour of lid closure systems under transport and storage conditions and the thermal behaviour of impact limiters were recently of special importance for the assessment competencies of BAM and were investigated under use of our test facilities. The paper describes the test facilities and capabilities for package design safety evaluation at BAM and shows examples from our recent work. T2 - PATRAM 2022, 20th International Symposium on the Packaging and Transportation of Radioactive Materials CY - Juan-les-Pins, France DA - 11.06.2023 KW - IAEA KW - Fire test KW - Drop testing KW - Transport KW - Package PY - 2023 SP - 1 EP - 12 AN - OPUS4-57967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Quercetti, Thomas A1 - Sterthaus, Jens A1 - Ballheimer, Viktor T1 - Experimental and numerical investigation of prestressed bolt connections under lateral displacements N2 - The containment system of transport packages for spent nuclear fuel and high-level waste usually includes bolted lids with metal gaskets. The packages are assessed to specific transport conditions which are specified in the IAEA safety standards SSR-6 (IAEA 2018). These transport conditions, especially the so-called accident conditions of transport, imply high dynamic loading on the lids and the bolt connections of the package. The response of the lid systems on the mechanical accident conditions is generally investigated by experimental drop tests or numerically, e.g., by finite element analyses. The interpretation of the drop test results for the verification of the numerical models is often not obvious due to the complex superposition of different effects in the real tests. BAM has started a research project to get a better understanding about the behavior of prestressed bolt connections under loadings typical for these drop tests. In this context an experimental test set-up was developed to investigate the response of a single bolt connection under a prescribed lateral displacement of clamped parts. The bolt is instrumented by strain gauges to get the pretensional, the torsional and the bending stress in the bolt shank. Furthermore, the lateral movement and the tilt of the bolt head is measured during the test. A finite element model of the test set-up has been created in Abaqus FEA (Simulia 2021). The very detailed instrumentation of the test set-up shall give the opportunity to investigate and validate the numerical model. The aim of this paper is to give an overview about the proposed research project and to present first results. T2 - SMIRT 26 (26th conference on Structural Mechanics in Reactor Technology) CY - Potsdam, Germany DA - 10.07.2022 KW - Bolt connections KW - Finite element anaylsis KW - Experimental testing KW - Transport package for radioactive materials PY - 2022 UR - https://www.lib.ncsu.edu/resolver/1840.20/40614 SP - 1 EP - 7 PB - IASMiRT AN - OPUS4-59378 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Wille, Frank A1 - Wieser, Günter A1 - Quercetti, Thomas T1 - Transport and Storage Cask Safety Assessment - Drop Tests and Numerical Calculations T2 - Waste Management Symposium 2006 CY - Tucson, Az. USA DA - 2006-02-26 KW - Transportbehälter KW - Lagerbehälter KW - Radioaktive Stoffe KW - Fallversuch KW - FEM KW - Sicherheit PY - 2006 SP - 12 pages CY - Tucson AN - OPUS4-12536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Gogolin, Bernd A1 - Droste, Bernhard T1 - Integrity of the "POLLUX" cask for final disposal: Experimental results of the mechanical tests T2 - PATRAM ´95 - 11th International Conference on the packaging and transportation of radioactive materials CY - Las Vegas, Nevada, USA DA - 1995-12-03 KW - Container KW - Gefahrgutumschließung KW - Integrität PY - 1995 VL - 3 SP - 1091 EP - 1098 AN - OPUS4-616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gogolin, Bernd A1 - Droste, Bernhard A1 - Quercetti, Thomas T1 - Drop-test program with the German "POLLUX" cask for final disposal of spent fuel T2 - PATRAM ´95 - 11th International Conference on the packaging and transportation of radioactive materials CY - Las Vegas, Nevada, USA DA - 1995-12-03 KW - Container KW - Brennelement KW - Endlagerung KW - Abfall, radioaktiv PY - 1995 VL - 1 SP - 159 EP - 166 AN - OPUS4-610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Quercetti, Thomas A1 - Wieser, Günter A1 - Völzke, Holger A1 - Droste, Bernhard ED - Droste, B. ED - Kowalewsky, H. T1 - Mechanical impact assessment of cubic waste containers depending on target construction T2 - PATRAM 98 - 12th International conference on the packaging and transportation of radioactive materials CY - Paris, France DA - 1998-05-10 PY - 1998 VL - 3 SP - 1152 EP - 1159 PB - Nuclear Technology Publishing CY - Paris, France AN - OPUS4-21556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Gogolin, Bernd A1 - Droste, Bernhard T1 - Nachweis der mechanischen Integrität eines "POLLUX" Transport- und Endlagerbehälters: Instrumentierte Freifallprüfungen T2 - GESA-Symposium - Experimentelle Beanspruchungsanalyse, Neue Entwicklungen und Anwendungen CY - Schliersee, Deutschland DA - 1996-10-10 PY - 1996 SP - 1 EP - 3(?) CY - Düsseldorf AN - OPUS4-21801 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Droste, Bernhard A1 - Quercetti, Thomas A1 - Gogolin, Bernd T1 - Test facilities for radioactive materials transport packagings (BAM, Germany) PY - 2001 SN - 0957-476X VL - 12 IS - 2/3 SP - 105 EP - 113 PB - Nuclear Technology Publ. CY - Ashford, Kent AN - OPUS4-21858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Wille, Frank ED - Saegusa, Toshiari ED - Sert, Gilles ED - Völzke, Holger ED - Wille, Frank T1 - Internal cask content collision during drop tests N2 - The interaction between the package lid system and internal Content during mechanical drop testing is a decisive matter in evaluating Impact loads and the safety of the package. In the case of movable contents ist impact onto the inner side of the package lid can cause additional load peaks on the lid and the lid bolts. Some aspects of this issue were discussed on the basis of experimental results from instrumented drop tests with transport casks and on the basis of analytical approaches. KW - Transport casks KW - Drop tests KW - Internal collision PY - 2018 SN - 978-981-3234-03-1 SP - Chapter 7, 103 EP - 120 PB - World Scientific Publishing CY - Singapore ET - 1 AN - OPUS4-47539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Völzke, Holger A1 - Quercetti, Thomas A1 - Ballheimer, Viktor A1 - Nehrig, Marko A1 - Wolff, Dietmar A1 - Wille, Frank T1 - Basic of Transport and Storage of Radioactive Materials N2 - Transport and storage of radioactive materials are performed in countries with policy of either closed or open nuclear fuel cycle. The related technologies have been established by accumulation of experiences and researches including demonstrative tests using full scale or scale models and analyses. Those are essential before commercialization, but are often costly and time consuming. Such demonstrative works should not be repeated meaninglessly, but can be shared through this kind of book and used by readers and the future generations to advance the technology effectively. This book systematically provides findings from lots of valuable researches on safety of transport and storage of radioactive materials under normal and accident conditions that have an impact on basis of safe regulations, designs, and operations. KW - Drop testing KW - Metal seals KW - Transport safety KW - Aging management KW - Package PY - 2018 SN - 978-981-3234-03-1 U6 - https://doi.org/10.1142/10820 SP - 1 EP - 376 PB - Worlds Scientific Publishing Co Pte Ltd CY - Singapore AN - OPUS4-44867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Droste, Bernhard A1 - Gogolin, Bernd A1 - Völzke, Holger A1 - Quercetti, Thomas A1 - Günther, Burkhard T1 - Extended drop tests of DCI casks with artificial flaws demonstrating the existing safety margins PY - 1995 SN - 0957-476X VL - 6 IS - 2/3 SP - 177 EP - 182 PB - Nuclear Technology Publ. CY - Ashford, Kent AN - OPUS4-21732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -