TY - JOUR A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stress Build-Up during Mulitlayer Welding with Novel Martensitic Filler Materials N2 - Neuartige sogenannte Low-Transformation-Temperature (LTT)- Schweißzusätze weisen eine chemische Zusammensetzung auf, welche die Martensitbildung zu vergleichsweise niedrigen Temperaturen verschiebt. Dies wirkt sich maßgeblich auf die nach dem Schweißen vorliegenden Eigenspannungen aus. Obwohl dazu zahlreiche Veröffentlichungen vorliegen, blieben die Wirkzusammenhänge zwischen Umwandlungstemperatur und Schweißeigenspannungen bislang ungeklärt. Aus diesem Grund wurde in der vorliegenden Arbeit ein Versuch in einer Großprüfanlage durchgeführt, um den Einfluss der Martensitumwandlung während des Mehrlagenschweißens zu analysieren. Die In-Prozess-Beobachtung der auftretenden Kräfte und Momente offenbarte, dass die Eigenspannungsreduktion vom jeweils umwandelnden Volumen abhängt. Die Analyse der Schweißeigenspannungen verdeutlichte, dass die angestrebte Eigenspannungsbeeinflussung durch den Zusatzwerkstoff stark von den Randbedingungen (d. h. Nahtaufbau, Blechdicke) abhängt und einer Bewertung im jeweiligen Anwendungsfall bedarf. N2 - Controlling the level of mostly detrimental residual stresses already during the welding process would be highly attractive as time and cost consuming post processing may be prevented. Innovative Low Transformation Temperature (LTT-) filler materials are specially designed for Controlling weld residual stresses by means of adjusted martensite formation already during welding. Numerous publications can be found on this issue, but they provide only little insight into the interaction between martensite formation and resulting welding residual stresses. Within this study a component weld test was performed in a special large-scale testing facility. In-situ load analysis revealed that the amount of stress reduction during deposition of the individual weld runs is dependent on the weld volume undergoing phase transformation related to the shrinking volume. The residual stresses found alter welding show that the desired residual stress control by using LTT alloys is sensitive to welding boundary conditions (i. e. weld geometry, plate thickness) and to be evaluated separately for varying weld scenarios. T2 - Spannungsentstehung während des Mehrlagenschweißens mit einem neuartigen martensitischen Schweißzusatz KW - Residual stresses KW - LTT filler material KW - Martensite KW - Phase transformation KW - Welding KW - Eigenspannungen KW - LTT-Zusatzwerkstoff KW - Martensit KW - Phasenumwandlung KW - Schweißen PY - 2014 U6 - https://doi.org/10.3139/105.110210 SN - 2194-1831 SN - 1867-2493 VL - 69 IS - 2 SP - 80 EP - 88 PB - Hanser CY - München AN - OPUS4-30719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Effekt der Wärmeführung auf schweißbedingte Beanspruchungen in Bauteilen aus hochfestem Feinkornbaustahl N2 - In modernen Stahlkonstruktionen werden zunehmend hochfeste Feinkornbaustähle mit Streckgrenzen ab 960 MPa eingesetzt. Die wirtschaftliche Verarbeitung dieser Stähle wird neben der Erreichung der anforderungsgerechten mechanischen Eigenschaften durch die Sicherheitsanforderungen an die Schweißnaht bestimmt. Dabei bedingen hohe Eigenspannungen im Schweißnahtbereich eine Reduzierung der Bauteilsicherheit. Insbesondere bei erhöhter konstruktiver Schrumpfbehinderung können Eigenspannungen risskritisches Niveau erreichen. In einer speziellen 2- MN-Prüfanlage wurden dazu Bauteilschweißversuche mit definierter äußerer Schrumpfbehinderung abgebildet. Während dieser mehrlagigen Schweißversuche war die gleichzeitige Messung von Temperatur und Reaktionskräften beim Schweißen und Abkühlen möglich. Die schweißnahtnahen Eigenspannungen wurden mittels röntgenographischer Eigenspannungsanalyse vor und nach dem Entlasten des Probeblechs in der Prüfanlage ermittelt. Sowohl die globalen als auch die lokalen schweißbedingten Beanspruchungen waren deutlich von der Wärmeführung beeinflusst.----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Modern steel constructions are built increasingly using highstrength fine-grained structural steels with a yield strength of ≥ 960 MPa. The efficient processing of these steels is determined not only by the achievement of the mechanical properties needed but also by the safety requirements of the weld. High stresses in the weld area cause a reduction of the component safety. Residual stresses can reach a critical level at which the material is susceptible to cracking, especially in case of increased constructive restraint. For this purpose, component weld tests with a defined external restraint were reproduced in a special 2-MN-testing facility. During these multi-layer weld tests the simultaneous measurement of the temperature and reaction forces during welding and cooling was possible. The residual stresses of the weld joint area were determined by means of X-ray difraction analysis before and after release of the restraint. The global stresses due to welding as well as the local ones were clearly influenced by the heat control. KW - Festigkeit KW - Hochfester Stahl KW - Metallurgische Fragen KW - Rissbildung KW - Eigenspannungen KW - Wärmeführung beim Schweißen KW - Wasserstoff KW - Werkstofffragen PY - 2014 SN - 0036-7184 VL - 66 IS - 8 SP - 434 EP - 441 PB - Verl. für Schweißen u. Verwandte Verfahren, DVS-Verl. CY - Düsseldorf AN - OPUS4-31582 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Kurzdarstellung der Projektergebnisse - Einfluss der Wärmeführung auf die Eigenspannungsausbildung und Kaltrisssicherheit in geschweißten Konstruktionen aus hochfesten Feinkornbaustählen - IGF-Vorhaben IGF-Nr. 17267 N (P 922) N2 - Aus wirtschaftlichen, konstruktiven sowie ästhetischen Aspekten werden moderne Stahlbaukonstruktionen immer schlanker und leichter ausgeführt. Dazu werden zunehmend hochfeste Feinkornbaustähle mit Dehngrenzen ≥ 690 MPa eingesetzt, wodurch eine Gewichtsreduzierung von 30 % bis 50 % und eine Kostenersparnis von 5 % bis 15 % erreicht werden kann. Das Potential hochfester Feinkornbaustähle ist unter Beachtung der heutigen Richtlinien und Regelwerke jedoch nicht ohne weiteres nutzbar. Durch das Forschungsvorhaben wurde der Einfluss der Wärmeführung auf die Eigenspannungsausbildung und Kaltrissbildung unter Berücksichtigung realitätsnaher Steifigkeitsbedingungen untersucht. Auf der Grundlage dieser Erkenntnisse wurde ein Beitrag zur Verbesserung der Verarbeitungsrichtlinien erarbeitet, welche dem Verarbeiter eine sichere schweißtechnische Verarbeitung bei verbesserter Ausnutzung der Materialeigenschaften ermöglicht. Vor allem die Tragfähigkeit und die Sicherheit der Schweißverbindung bestimmen die Bemessung der Konstruktion und somit den nachhaltigen und ökonomischen Einsatz dieser Güten. Der Zusammenhang zwischen der Höhe der entstehenden Eigenspannungen und der Wärmeführung in realen Konstruktionen ist zurzeit nur qualitativ überschaubar und führt zu einer eher konservativen Auslegung heutiger Schweißkonstruktionen. Die wirtschaftliche Verarbeitung hochfester Stähle wird neben dem Erreichen anforderungsgerechter mechanischer Eigenschaften im Schweißnahtbereich vor allem durch die Vermeidung von Kaltrissen bestimmt. Die diesbezüglichen Empfehlungen in den geltenden Regelwerken beruhen jedoch vornehmlich auf Erkenntnissen aus Laborschweißungen an Kleinproben unter freier äußerer Schrumpfung. Die Hauptursachen für die Entstehung von Eigenspannungen wie inhomogene, lokale Erwärmung und Abkühlung der schweißnahtnahen Bereiche und insbesondere die konstruktive Schrumpfbehinderung infolge umgebender Montagegruppen werden damit jedoch nicht abgebildet. Der Einfluss der Wärmeführung, insbesondere der lokalen Vorwärmung, auf die Eigenbeanspruchung einer Konstruktion ist derzeit weitgehend unbekannt. Ziel des Forschungsvorhabens war es, den Einfluss der Wärmeführung auf die Eigenspannungsausbildung in geschweißten Konstruktionen zu quantifizieren sowie Aussagen zur Beeinflussung und Absenkung der Eigenspannungen und somit der Gesamteigenbeanspruchung von Schweißkonstruktionen zu erarbeiten. Dazu wurden durch die sukzessive Steigerung des Einspanngrades der Zusammenhang zwischen Wärmeführung und resultierender Eigenspannung unter zusätzlicher Schrumpfbehinderung geklärt. Ferner wurde die Übertragbarkeit der den Regelwerken zugrundeliegenden Kleinprobenergebnisse auf reale Konstruktionen untersucht. Mithilfe systematischer Klein- und Großlastschweißversuche an definiert schrumpfbehinderten Proben konnte der Einfluss der Wärmeführung sowohl auf die lokalen nahtnahen Eigenspannungen als auch globale Eigenbeanspruchungen durch Reaktionsspannungen analysiert werden. Es zeigte sich, dass eine Reduktion der lokalen Eigenspannungen und der Eigenbeanspruchung von geschweißten Konstruktionen durch eine geringere Wärmeeinbringung möglich ist. Eine Absenkung der Zwischenlagentemperatur erwies sich dabei unter anderem als besonders günstig. Damit ist es möglich vorhandene Wärmeführungskonzepte für hochfeste Stähle zu optimieren und dadurch die Kaltrissbildung zu vermeiden. KW - MAG-Schweißen KW - Eigenspannungen KW - Hochfester Stahl KW - Kaltrisssicherheit PY - 2014 SP - 1 EP - 2 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-59256 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -