TY - JOUR A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas ED - Lippold, J. ED - Boellinghaus, Thomas ED - Richardson, I. T1 - Influence of heat control on hydrogen distribution in high-strength multi-layer welds with narrow groove JF - Welding in the World N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa are gaining popularity in civil engineering and construction of heavy vehicles. With increasing yield strength, the susceptibility for degradation of the mechanical properties in the presence of diffusible hydrogen, i.e., hydrogen-assisted cracking (HAC), generally increases. HAC is a result of the critical interaction between local microstructure, mechanical load, and hydrogen concentration. In existing standards for welding of HSLA-steels, recommendations including working temperatures and dehydrogenation heat treatment (DHT) are given to Limit the amount of introduced hydrogen during welding. These recommendations are based on investigations into conventional arc welding processes. In the past decade, modern weld technologies were developed to enable welding of narrower weld seams with V-grooves of 30°, e.g., the modified spray arc process. In that connection, a reduced number of weld runs and weld volume are important technical and, economic benefits. In the present study, the hydrogen distribution in S960QL multi-layer welds with thickness of 20 mm was analyzed. The influence of different weld seam opening angles, heat input, working temperature and DHT were investigated. The results show that weldments with narrow grooves contained an increased amount of diffusible hydrogen. Hydrogen concentration has been reduced by decreasing both the heat input and working temperature. Hydrogen-free weldments were only achieved via subsequent DHT after welding. Furthermore, hydrogen distribution was experimentally determined across the weld seam thickness in HSLA gas metal arc welded multi-layer welds for the first time. KW - Hydrogen KW - GMAW KW - High-strength steels KW - Heat control KW - Heat treatment PY - 2019 DO - https://doi.org/10.1007/s40194-018-00682-0 SN - 0043-2288 SN - 1878-6669 VL - 63 IS - 3 SP - 607 EP - 616 PB - Springer CY - Berlin Heidelberg AN - OPUS4-47878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Influence of the weld thermal cycle on residual stress evolution and cold cracking ressistance in welded high-strength steel constructions T2 - 2nd METEC & ESTAD 2015 - European steel technology and application days conference (Proceedings) N2 - The application of high-strength fine-grained structural steels with yield stress ≥ 690 MPa permits significant weight reductions and cost savings. Since welding is the major joining technology, e.g. in mobile crane industry, the sustainable and economical application of these grades depends on the load-bearing capacity and safety of the welds. An economical processing of high-strength steels is determined above all by the avoidance of cold cracking, apart from achieving demand-oriented mechanical properlies in the weid area. High tensile residual stresses are disadvantageaus regarding the cold cracking resistance and strength of welded components. Furthermore, high restraints commonly appearing in component welds increase residual stresses. Hence, in this research the influences of heat control on residual stresses and the overall structural Ioad of welded structures were quantified. The relationship between the weid thermal cycle and the resulting residual stress under additional shrinkage restraint was analysed by a successive augmentation of the restraint intensity. This was achieved by systematic low Ioad and component weid tests. lt was observed that the heat control significantly affects the local residual stresses and the overall structural Ioad of welded structures. A high interpass temperature increases the global and local welding stresses in particular. Moreover, the transferability of experimental welding results obtained from small specimens according to applicable codes to real component geometries was investigated. With the help of these findings it is possible to improve existing heat control concepts for high-strength steel welding. T2 - 2nd METEC & ESTAD 2015 - European steel technology and application days conference CY - Düsseldorf, Germany DA - 15.06.2015 KW - Residual stresses KW - Welding KW - HEat control KW - GMAW KW - Restraint KW - High-strength steels KW - Cold cracking KW - MAG welding KW - Process parameters PY - 2015 SP - P668, 1 EP - 7 AN - OPUS4-34988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Stress build-up in HSLA steel welds due to material behaviour JF - Journal of materials processing technology N2 - For the performance of high-strength steel welds by means of load bearing capacity and safety, the information about stress level and distribution due to welding is needed. The interaction between the filler material grade (strength) and heat input on the reaction stresses in high-strength steels, welded under defined restraint conditions were analysed. Butt welds were joined by a multilayer GMAW process in the Instrumented Restraint Cracking test facility (IRC-test). This test facility allowed a defined restraint and, simultaneously, an in-situ analysis of the reaction stresses while welding and cooling. The reaction force build-up of the weld tests showed a significant influence of the used filler materials according to the heat input. Higher strength filler material grades cause a decrease of the welding stresses compared to lower strength grades, if a low heat input is used. The different stress build-up is described in detail for the root welds, filler layers and subsequent cooling to ambient temperature. Residual stresses in the weld, HAZ and base material were measured in loaded and unloaded condition using the incremental hole drilling method. KW - Welding stresses KW - GMAW KW - Restraint KW - High-strength steels KW - Filler material PY - 2016 DO - https://doi.org/10.1016/j.jmatprotec.2015.08.003 SN - 0924-0136 SN - 1873-4774 VL - 227 SP - 49 EP - 58 PB - Elsevier CY - Amsterdam AN - OPUS4-34989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quackatz, Lukas A1 - Gornushkin, Igor A1 - Griesche, Axel A1 - Kannengiesser, Thomas A1 - Treutler, Kai A1 - Wesling, Volker T1 - In situ chemical analysis of duplex stainless steel weld by laser induced breakdown spectroscopy JF - Spectrochimica Acta Part B N2 - The high corrosion resistance and good mechanical properties of duplex stainless steel (DSS) are due to its special chemical composition, which is a balanced phase ratio of ferrite (α) and austenite (γ). Many industrial applications require the integration of DSS components. For this, Gas tungsten arc welding (GTAW) is an excellent choice, as it allows an automated operation with high reproducibility. However, when the weld pool solidifies, critical ratios of α- and γ- phases can occur, which lead to solidification cracking, increased susceptibility to corrosion, and a decrease in ductility and critical strength. Previous studies have shown that these defects can be caused by the accumulation of manganese and chromium in the heat affected zone (HAZ), requiring ongoing monitoring of this accumulation. A suitable method for such monitoring is laser-induced breakdown spectroscopy (LIBS), which can be used in two operating modes: calibration using standard reference samples and calibration-free. Unlike conventional quantitative LIBS measurements, which require reference samples to generate a calibration curve, calibration-free LIBS (CF-LIBS) allows chemical compositions to be determined solely from the emission spectrum of the plasma. Numerous publications show that CF-LIBS is a fast and efficient analytical method for the quantitative analysis of metal samples. In this work, CF-LIBS is applied to spectra obtained during GTAW DSS welding and the result is compared with those obtained by PLS analysis. A good correlation was found between both types of analysis, demonstrating the suitability of the CF-LIBS method for this application. The CF-LIBS method has a significant advantage over conventional LIBS due to the rapid in situ measurement of concentrations of major alloying elements without calibration procedure. This, combined with fast feedback and appropriate adjustment of welding parameters, helps prevent welding defects. KW - Duplex stainless steels KW - In situ measurement KW - LIBS KW - GMAW PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597940 DO - https://doi.org/10.1016/j.sab.2024.106899 SN - 0584-8547 VL - 214 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-59794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -