TY - JOUR A1 - Behnke, Thomas A1 - Würth, Christian A1 - Laux, Eva-Maria A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute T1 - Simple strategies towards bright polymer particles via one-step staining procedures N2 - In order to develop simple and versatile procedures for the preparation of red emissive particles, various one-step swelling procedures for the loading of fluorophores into nanometer- and micrometer-sized polystyrene particles were systematically assessed. Parameters studied for model dyes from common dye classes include the composition of the swelling medium, dye charge and polarity, dye concentration, and particle surface chemistry. The dye loading procedures were compared based upon the efficiency of dye incorporation, fluorescence intensity, and colloidal stability of the resulting particles as well as the absence of dye leaking as determined by absorption and fluorescence spectroscopy, flow cytometry, and measurements of zeta potentials. In addition, for the first time, the influence of the amount of incorporated dye on the absolute fluorescence quantum yield and brightness of the fluorescent particles was investigated for selected chromophores in differently sized particles using a custom-made calibrated integrating sphere setup. Our results demonstrate the general suitability of these one-step loading procedures for efficient particle staining with neutral, zwitterionic, and charged fluorophores like oxazines, coumarines, squaraines, xanthenes, and cyanines emitting in the visible and near infrared. Dye polarity was identified as a suitable tool to estimate the loading efficiency of fluorophores into these polymer particles. KW - Fluorescence KW - Polystyrene KW - Particles KW - Encapsulation KW - Quantum yield KW - Zeta potential KW - Method KW - Label KW - Particle KW - Polymer KW - Absolute fluorescence quantum yield KW - Fluorophore KW - Dye content KW - Surface groups KW - Size KW - Brightness PY - 2012 DO - https://doi.org/10.1016/j.dyepig.2012.01.021 SN - 0143-7208 SN - 1873-3743 VL - 94 IS - 2 SP - 247 EP - 257 PB - Elsevier Ltd. CY - Kidlington AN - OPUS4-25481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laux, Eva-Maria A1 - Behnke, Thomas A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute T1 - Keeping particles brilliant - simple methods for the determination of the dye content of fluorophore-loaded polymeric particles N2 - One of the most active research areas in the life and material sciences is the design and synthesis of fluorescent nano- and micrometre sized particles for applications e.g. as labels, sensor systems, and platforms for fluorescence assays or barcoding materials. The reliable and reproducible fabrication of such particles as well as many applications require accurate, simple, and versatile procedures for the determination of the dye content per particle which affects e.g. the brightness of these materials and their surface charge and thus, colloidal stability. Here, four fast and inexpensive spectroscopic methods for the quantification of the fluorophore content of beads are presented and compared for nanometre- and micrometre sized polystyrene particles loaded or labeled with commercial fluorophores, differing in dye class, charge, and hydrophilicity. This included the determination of the amount of incorporated dye from absorption spectra of bead suspensions, via dissolving of the polymer matrix, via extraction of the polymer matrix, and from the supernatant of the swelling solution or reaction mixture. Method validation was performed with a sulfur-containing dye and elemental analysis. Based upon this method comparison and the accomplishable uncertainties, two reliable strategies for particle characterization and bead process control are identified that can be easily extended to other materials. PY - 2012 DO - https://doi.org/10.1039/c2ay05822g SN - 1759-9660 SN - 1759-9679 VL - 4 IS - 6 SP - 1759 EP - 1768 PB - RSC Publ. CY - Cambridge AN - OPUS4-26051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Grabolle, Markus A1 - Resch-Genger, Ute T1 - Nanoparticle-encapsulated vis- and NIR-emissive fluorophores with different fluorescence decay kinetics for lifetime multiplexing N2 - Bioanalytical, clinical, and security applications increasingly require simple, efficient, and versatile strategies to measure an ever increasing number of analytes or events in parallel in a broad variety of detection formats as well as in conjunction with chromatographic separation techniques or flow cytometry. An attractive alternative to common optical multiplexing and encoding methods utilizing spectral multiplexing/color encoding and intensity encoding is lifetime multiplexing, which relies on the discrimination between different fluorescent reporters based on their fluorescence decay kinetics. Here, we propose a platform of surface-functionalizable polymeric nanoparticles stained with fluorophores differing in their fluorescence lifetimes as a new multiplexing and encoding approach. Proof-of-concept measurements with different sets of lifetime-encoded polystyrene nanoparticles are presented, obtained via staining of preformed particles with visible (vis)- and near-infrared (NIR)-emissive organic dyes, which display very similar absorption and emission spectra to enable excitation and detection at the same wavelengths, yet sufficiently different fluorescence decay kinetics in suspension, thereby minimizing instrumentation costs. Data analysis was performed with a linear combination approach in the lifetime domain. Our results and first cell experiments with these reporter sets underline the suitability of our multiplexing strategy for the discrimination between and the quantification of different labels. This simple and versatile concept can be extended to all types of fluorophores, thereby expanding the accessible time scale, and can be used, e.g., for the design of labels and targeted probes for fluorescence assays and molecular imaging, cellular imaging studies, and barcoding applications, also in conjunction with spectral and intensity encoding. KW - Fluorescent label KW - Multiplexing KW - Optical KW - encoding KW - Lifetime multiplexing KW - Fluorescence lifetime imaging FLIM KW - Nanoparticles PY - 2014 DO - https://doi.org/10.1007/s00216-013-7597-3 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 14 SP - 3315 EP - 3322 PB - Springer CY - Berlin AN - OPUS4-30077 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Drescher, Daniela A1 - Kneipp, Janina A1 - Resch-Genger, Ute T1 - Lifetime-based discrimination between spectrally matching vis and NIR emitting particle labels and probes N2 - Increasing the information content from bioassays which requires robust and efficient strategies for the detection of multiple analytes or targets in a single measurement is an important field of research, especially in the context of meeting current security and health concerns. An attractive alternative to spectral multiplexing, which relies on fluorescent labels excitable at the same wavelength, yet sufficiently differing in their emission spectra or color presents lifetime multiplexing. For this purpose, we recently introduced a new strategy based on 'pattern-matching' in the lifetime domain, which was exemplary exploited for the discrimination between organic dyes and quantum dot labels revealing multi-exponential decay kinetics and allowed quantification of these labels. Meanwhile, we have succeeded in extending this lifetime multiplexing approach to nanometer-sized particle labels and probes absorbing and emitting in the visible (vis) and near-infrared (NIR) spectral region. Here, we present a first proof-of-principle of this approach for a pair of NIR-fluorescent particles. Each particle is loaded with a single organic dye chosen to display very similar absorption and emission spectra, yet different fluorescence decay kinetics. Examples for the lifetime-based distinction between pairs of these fluorescent nanoparticles in solution and in cells are presented. The results underline the potential of fluorescenc lifetime multiplexing in life science and bioanalysis. KW - Fluorescence KW - Fluorescence lifetime imaging microscopy KW - FLIM KW - Lifetime Multiplexing KW - Particle Label KW - Near-infrared KW - NIR KW - Cell imaging KW - Nanoparticles PY - 2011 DO - https://doi.org/10.1117/12.881442 SN - 1605-7422 VL - 7905 SP - 79051F-1 EP - 79051F-9 PB - SPIE, The International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-23637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Ohnesorge, Marius A1 - Resch-Genger, Ute T1 - Polymer- and glass-based fluorescence standards for the near infrared (NIR) spectral region N2 - The widespread use and acceptance of fluorescence techniques especially in regulated areas like medical diagnostics is closely linked to standardization concepts that guarantee and improve the comparability and reliability of fluorescence measurements. At the core of such concepts are dependable fluorescence standards that are preferably certified. The ever rising interest in fluorescence measurements in the near-infrared (NIR) spectral region renders the availability of spectral and intensity standards for this wavelength region increasingly important. This encouraged us to develop approaches to solid NIR standards based upon dye-doped polymers and assess their applicationrelevant properties in comparison to metal ion-doped glasses. The overall goal is here to provide inexpensive, easily fabricated, and robust internal and external calibration tools for a broad variety of fluorescence instruments ranging e.g. from spectrofluorometers over fluorescence microscopes to miniaturized fluorescence sensors. KW - Fluorescence standard KW - PMMA KW - Photostability KW - Perylene KW - Rhodamine 800 KW - Dye-doped polymers KW - Glass KW - Laser dye PY - 2011 DO - https://doi.org/10.1007/s10895-010-0650-0 SN - 1053-0509 SN - 1573-4994 VL - 21 IS - 3 SP - 953 EP - 961 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-22184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, A. A1 - Lischeid, G. A1 - Koch, Matthias A1 - Lentzsch, P. A1 - Sommerfeld, Thomas A1 - Müller, M.H. T1 - Co-Cultivation of Fusarium, Alternaria, and Pseudomonas on Wheat-Ears Affects Microbial Growth and Mycotoxin Production N2 - Mycotoxigenic fungal pathogens Fusarium and Alternaria are a leading cause of loss in cereal production. On wheat-ears, they are confronted by bacterial antagonists such as pseudomonads. Studies on these groups’ interactions often neglect the infection process’s temporal aspects and the associated priority effects. In the present study, the focus was on how the first colonizer affects the subsequent ones. In a climate chamber experiment, wheat-ears were successively inoculated with two different strains (Alternaria enuissima At625, Fusarium graminearum Fg23, or Pseudomonas simiae Ps9). Over three weeks, microbial abundances and mycotoxin concentrations were analyzed and visualized via Self Organizing Maps with Sammon Mapping (SOM-SM). All three strains revealed different characteristics and strategies to deal with co-inoculation: Fg23, as the first colonizer, suppressed the establishment of At625 and Ps9. Nevertheless, primary inoculation of At625 reduced all of the Fusarium toxins and stopped Ps9 from establishing. Ps9 showed priority effects in delaying and blocking the production of the fungal mycotoxins. The SOM-SM analysis visualized the competitive strengths: Fg23 ranked first, At625 second, Ps9 third. Our findings of species-specific priority effects in a natural environment and the role of the mycotoxins involved are relevant for developing biocontrol strategies. KW - Antagonists KW - Microbe interactions KW - Mycotoxins KW - Priority effect KW - SOM-SM PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521554 DO - https://doi.org/10.3390/microorganisms9020443 VL - 9 IS - 2 SP - 443 PB - MDPI AN - OPUS4-52155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Denißen, M. A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - 3-Piperazinyl propenylidene indolone merocyanines: consecutive three-component synthesis and electronic properties of solid-state luminophores with AIE properties N2 - A series of twelve 3-piperazinyl propenylidene indolone merocyanines was synthesized in a one-pot fashion using a consecutive three-component insertion-coupling-Michael addition sequence. Physicalorganic treatment of the absorption data of a consanguineous series of this library allows semiquantitative Linear Free Energy Relationships (LFERs) to be established and confirmation of the positive Absorption solvatochromicity. All Boc-substituted piperazinyl merocyanines display aggregation induced Emission (AIE), which was corroborated for two solvent systems. In particular, crystallization-induced Emission enhancement (CIEE) induced by ultrasonication could be shown for a model chromophore by confocal laser scanning microscopy (CLSM). KW - Indolone merocyanines KW - AIE KW - CIEE KW - CLSM PY - 2017 DO - https://doi.org/10.1039/c7qm00198c SN - 2052-1537 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. VL - 1 IS - 10 SP - 2013 EP - 2026 AN - OPUS4-43213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Hoffmann, Katrin A1 - Würth, Christian A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Standardization of fluorescence measurements in the UV/vis/NIR/IR N2 - Photoluminescence techniques are amongst the most widely used Tools in the life sciences, with new and exciting applications in medical diagnostics and molecular Imaging continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for Multiplexing, remote sensing, and miniaturization. General drawbacks are, however, signals, that contain unwanted wavelength- and polarization contributions from Instrument-dependent effects, which are also time-dependent due to aging of Instrument-components, and difficulties to measure absolute flourescence entensities. Moreover, scattering Systems require Special measurement geometries and the interest in new optical Reporters with Emission > 1000 nm strategies for reliable measurements in the second diagnostic for the comparison of material Performance and the rational designg of new flourophores with improved properties. Here, we present strategies to versatile method-adaptable liquid and solid flourescence Standards for different flourescence paramters including traceable Instrument calibration procedures and the design of integrating spere setups for the absolute measurements of emission spectra and Quantum yields in the wavelength Region of 350 to 1600 nm. Examples are multi-Emitter glasses, spectral flourescence Standards, and quantum yield Standards for the UV/vis/NIR. T2 - Conference on Molecular-Guided Surgery - Molecules, Devices, and Applications III CY - San Francisco, CA, USA DA - 28.01.2017 KW - Fluorescence KW - Reference material KW - Standard KW - Calibration KW - Nanoparticle KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Quantum yield standard KW - Emission standards PY - 2017 SN - 978-1-5106-0539-8 DO - https://doi.org/10.1117/12.2255728 SN - 0277-786X VL - 10049 SP - 1 PB - Proceedings of SPIE AN - OPUS4-41783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Hoffmann, Thomas A1 - Range, David A1 - Altmann, Korinna T1 - Microplastics in sediments of the river Rhine—A workflow for preparation and analysis of sediment samples from aquatic river systems for monitoring purposes N2 - AbstractMicroplastics (MP) can be detected in all environmental systems. Marine and terrestrial aquatic systems, especially the transported suspended solids, have often been the focus of scientific investigations in the past. Sediments of aquatic river systems, on the other hand, were often ignored due to the time‐consuming sample preparation and analysis procedures. Spectroscopic measurement methods counting particle numbers are hardly suitable as detection methods, because there are plenty of natural particles next to a small number of MP particles. Integral methods, such as thermoanalytical methods are determining the particle mass independently of the inorganic components.In this study, a workflow for sample preparation via density separation and subsequent analysis by thermal extraction desorption‐gas chromatography/mass spectrometry is presented, which leads to representative and homogeneous samples and allows fast and robust MP mass content measurements suitable for routine analysis. Polymers were identified and quantified in all samples. Polyethylene and styrene‐butadiene rubber are the dominant polymers, besides polypropylene and polystyrene. Overall, total polymer masses between 1.18 and 337.0 µg/g could be determined. Highest MP concentrations in riverbed sediment are found in sites characterized by low flow velocities in harbors and reservoirs, while MP concentrations in sandy/gravelly bed sediments with higher flow velocities are small. KW - Microplastics KW - Density separation KW - TED-GC/MS KW - NaI PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597335 DO - https://doi.org/10.1002/appl.202200125 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-59733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behnke, Thomas A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Hübner, Martin A1 - Panne, Ulrich A1 - Resch-Genger, Ute T1 - Encapsulation of hydrophobic dyes in polystyrene micro- and nanoparticles via swelling procedures N2 - Aiming at the derivation of a generalized procedure for the straightforward preparation of particles fluorescing in the visible and near-infrared (NIR) spectral region, different swelling procedures for the loading of the hydrophobic polarity-probe Nile Red into nano- and micrometer sized polystyrene particles were studied and compared with respect to the optical properties of the resulting particles. The effect of the amount of incorporated dye on the spectroscopic properties of the particles was investigated for differently sized beads with different surface chemistries, i.e., non-functionalized, aminomodified and PEG-grafted surfaces. Moreover, photostability and leaking studies were performed. The main criterion for the optimization of the dye loading procedures was a high and thermally and photochemically stable fluorescence output of the particles for the future application of these systems as fluorescent labels. KW - Fluorescence KW - Nile red KW - Polystyrene KW - Nanoparticles KW - Microparticles KW - Encapsulation KW - Swelling PY - 2011 DO - https://doi.org/10.1007/s10895-010-0632-2 SN - 1053-0509 SN - 1573-4994 VL - 21 IS - 3 SP - 937 EP - 944 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-22692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -