TY - CONF A1 - Schlick-Hasper, Eva A1 - Bruchno, Martin A1 - Goedecke, Thomas T1 - Release of Powdery or Granular Substances from Intact Dangerous Goods Bags During Road Transport - Analysis of the Causes and Development of a Test Concept T2 - Proceedings of IAPRI Member Conference 2021 N2 - Abstract: The leaks of dangerous goods from actually intact bags detected in the years 2018 to 2020 tend to be at an almost constant high level. These releases of powdery or granular dangerous goods represent violations of the sift-proofness required in the dangerous goods regulations. This article first analyzes the causes. The components of the bags that are affected by leaks are micro-perforations, joins and closures, in particular internal sleeve valves. A distinction must be made between bags closed in conformity with or contrary to the manufacturer's instructions. The particle release is determined by a number of influencing factors of the filling substance, the packaging and other boundary conditions. Therefore, a comprehensive test concept is developed in this work, which takes all these factors into account. The application of this test concept facilitates the planning of the test setup and the experiments. On this basis, the complex mechanisms involved in the release of solid substances can be systematically investigated in the test laboratory. To prevent releases of powdery or granular substances from intact bags, it is necessary that the user has access to the closing instructions and the relevant properties of the test substance used for the design type approval. Further experimental investigations are needed to assess whether filling substances change their properties during transport and whether this enables them to escape. T2 - IAPRI Member Conference 2021 CY - Online meeting DA - 15.06.2021 KW - Bags KW - Dangerous goods packagings KW - Sift-proofness KW - Particles KW - Leak PY - 2021 UR - https://whova.io/email/click/d11d7d6cf1c84dfdc8c12349468fe91c/c9af5bcf002312cff80d9b962d1014e4/ SN - 978-1-63821-160-0 SP - 390 EP - 405 PB - IAPRI CY - East Lansing, Michigan, USA AN - OPUS4-52786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlick-Hasper, Eva A1 - Bruchno, Martin A1 - Thomas, Goedecke T1 - Release of Powdery or Granular Substances from Intact Dangerous Goods Bags During Road Transport - Analysis of the Causes and Development of a Test Concept JF - Packaging Technology And Science N2 - The leaks of dangerous goods from actually intact bags detected in the years 2018 to 2020 tend to be at an almost constant high level. These releases of powdery or granular dangerous goods represent violations of the sift-proofness required in the dangerous goods regulations. This article first analyzes the causes. The components of the bags that are affected by leaks are micro-perforations, joins and closures, in particular internal sleeve valves. A distinction must be made between bags closed in conformity with or contrary to the manufacturer's instructions. The particle release is determined by a number of influencing factors of the filling substance, the packaging and other boundary conditions. Therefore, a comprehensive test concept is developed in this work, which takes all these factors into account. The application of this test concept facilitates the planning of the test setup and the experiments. On this basis, the complex mechanisms involved in the release of solid substances can be systematically investigated in the test laboratory. To prevent releases of powdery or granular substances from intact bags, it is necessary that the user has access to the closing instructions and the relevant properties of the test substance used for the design type approval. Further experimental investigations are needed to assess whether filling substances change their properties during transport and whether this enables them to escape. KW - Bags KW - Dangerous goods packagings KW - Leak KW - Particles KW - Sift-proofness PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527287 DO - https://doi.org/10.1002/pts.2575 SN - 0894-3214 VL - 34 IS - 7 SP - 435 EP - 446 PB - Wiley AN - OPUS4-52728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlick-Hasper, Eva A1 - Jahnke, Wolfgang A1 - Drousch, Björn A1 - Goedecke, Thomas A1 - Kraume, M. T1 - Experimental investigations concerning the sensitivity of the leakproofness test for dangerous goods packagings relating to the leak diameter JF - Packaging technology & science N2 - The objective of this experiment was to verify that in regards to the leakproofness bubble test for packagings of dangerous goods, a reduction of the air overpressure from 0.2 to 0.1 bar can be compensated for by reducing the water surface tension to a value of approximately 33.2 mN/m by adding a wetting agent. It was experimentally proven that this method will yield the same leak diameters. This is important to avoid irreversible deformations during the leaktesting of intermediate bulk containers (IBCs) while using a test overpressure of 0.2 bar. Bubble test experiments were carried out on artificial borehole-shaped leaks manufactured of two different materials high density polyethylene (HDPE) and stainless steel by ultrashort pulse laser technology and with two different immersion test liquids (deionized water and a 0.1% Lutensol FSA fabric softener active 10 solution). The characteristic diameters of the boreholes investigated were from 11.5 to 30.3 µm in length. KW - Dangerous goods packaging KW - Leakproofness test KW - Bubble test KW - Leak KW - Ultrashort pulse laser PY - 2014 DO - https://doi.org/10.1002/pts.2029 SN - 0894-3214 VL - 27 IS - 4 SP - 327 EP - 339 PB - Wiley CY - Chichester, UK AN - OPUS4-30502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -