TY - JOUR A1 - Felbeck, Tom A1 - Behnke, Thomas A1 - Hoffmann, Katrin A1 - Grabolle, Markus A1 - Lezhnina, M.M. A1 - Kynast, U.H. A1 - Resch-Genger, Ute T1 - Nile-red-nanoclay hybrids: Red emissive optical probes for use in aqueous dispersion JF - Langmuir N2 - Water-dispersible and (bio)functionalizable nanoclays have a considerable potential as inexpensive carriers for organic molecules like drugs and fluorophores. Aiming at simple design strategies for red-emissive optical probes for the life sciences from commercial precursors with minimum synthetic effort, we systematically studied the dye loading behavior and stability of differently functionalized laponites. Here, we present a comprehensive study of the absorption and emission properties of the red emissive hydrophobic and neutral dye Nile Red, a well-known polarity probe, which is almost insoluble and nonemissive in water. Adsorption of this probe onto disk-shaped nanoclays was studied in aqueous dispersion as function of dye concentration, in the absence and presence of the cationic surfactant cetyltrimethylammonium bromide (CTAB) assisting dye loading, and as a function of pH. This laponite loading strategy yields strongly fluorescent nanoclay suspensions with a fluorescence quantum yield of 0.34 at low dye loading concentration. The dye concentration-, CTAB-, and pH-dependent absorption, fluorescence emission, and fluorescence excitation spectra of the Nile-Red6#8211;nanoclay suspensions suggest the formation of several Nile Red species including emissive Nile Red monomers facing a polar environment, nonemissive H-type dimers, and protonated Nile Red molecules that are also nonfluorescent. Formation of all nonemissive Nile Red species could be suppressed by modification of the laponite with CTAB. This underlines the great potential of properly modified and functionalized laponite nanodisks as platform for optical probes with drug delivery capacities, for example, for tumor and therapy imaging. Moreover, comparison of the Nile Red dimer absorption spectra with absorption spectra of previously studied Nile Red aggregates in dendrimer systems and micelles and other literature systems reveals a considerable dependence of the dimer absorption band on microenvironment polarity which has not yet been reported so far for H-type dye aggregates. KW - Nile Red KW - Dye KW - Laponite KW - Nanoclay KW - Photoluminescence KW - Fluorescence KW - Polarity probe KW - Aggregate KW - Dimer PY - 2013 UR - http://pubs.acs.org/doi/pdf/10.1021/la402165q DO - https://doi.org/10.1021/la402165q SN - 0743-7463 SN - 1520-5827 VL - 29 IS - 36 SP - 11489 EP - 11497 PB - American Chemical Society CY - Washington, DC AN - OPUS4-29017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kothavale, S. A1 - Jadhav, A. G. A1 - Scholz, Norman A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Resch-Genger, Ute A1 - Sekar, N. T1 - Corrigendum to "Deep red emitting triphenylamine based coumarin-rhodamine hybrids with large stokes shift and viscosity sensing: Synthesis, photophysical properties and DFT studies of their spirocyclic and open forms" [Dyes Pigments 137 (2017) 329-341] JF - Dyes and pigments N2 - We designed and synthesized triphenylamine based and coumarin fused rhodamine hybrid dyes and characterized using 1H, 13C NMR and HR-LCMS analysis. Both the newly synthesized hybrid dyes were found to show red shifted absorption as well as emissions and large Stokes shift (40e68 nm) as compared to the small Stokes shift (25e30 nm) of reported dyes Rhodamine B and 101. Photophysical properties of these dyes were studied in different solvents and according to the solvents acidity or basicity they preferred to remain in their spirocyclic or open form in different ratio. We studied the spirocyclic as well as open form derivatives of these dyes for their viscosity sensitivity in three different mixture of solvents i.e. polar-protic [EtOH-PEG 400], polar-aprotic [toluene-PEG 400] and non-polaraprotic [toluene-paraffin]. They are found to show very high viscosity sensitivity in polar-protic mixture of solvents [EtOH-PEG 400] and hence concluded that both polarity as well as viscosity factor worked together for the higher emission enhancement rather than only viscosity factor. As these dyes showed very high viscosity sensitivity in their spirocyclic as well as open form, they can be utilized as viscosity sensors in visible as well as deep red region. We also correlated our experimental finding theoretically by using Density Functional theory computations. KW - Dye KW - Fluorescence KW - Synthesis KW - Quantum yield KW - Lifetime KW - Coumarin KW - Rhodamine KW - Probe KW - Viscosity PY - 2018 DO - https://doi.org/10.1016/j.dyepig.2017.06.021 SN - 0143-7208 SN - 1873-3743 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. VL - 149 SP - 929 PB - Elsevier CY - Amsterdam AN - OPUS4-44038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gers-Panther, C.F. A1 - Fischer, H. A1 - Nordmann, J. A1 - Seiler, T. A1 - Behnke, Thomas A1 - Würth, Christian A1 - Frank, W. A1 - Resch-Genger, Ute A1 - Müller, T.J.J. T1 - Four- and Five-Component Syntheses and Photophysical Properties of Emission Solvatochromic 3‑Aminovinylquinoxalines JF - Journal of organic chemistry N2 - 3-Aminovinylquinoxalines are readily accessible from (hetero)aryl glyoxylic acids or heterocyclic π-nucleophiles by consecutive four- and fivecomponent syntheses in the sense of an activation-alkynylation-cyclocondensation-addition sequence or glyoxylation-alkynylation-cyclocondensation-addition sequence in good yields. The title compounds are highly fluorescent with pronounced emission solvatochromicity and protochromic fluorescence quenching. Time-resolved fluorescence spectroscopy furnishes radiative and nonradiative fluorescence decay rates in various solvent polarities. The electronic structure is corroborated by DFT and TD-DFT calculations rationalizing the observed spectroscopic effects. KW - Dye KW - Syntheseis KW - Spectroscopy PY - 2016 DO - https://doi.org/10.1021/acs.joc.6b02581 SN - 0022-3263 VL - 82 SP - 567 EP - 578 PB - ACS Publications AN - OPUS4-39211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholz, Norman A1 - Jadhav, A. A1 - Shreykar, M. A1 - Behnke, Thomas A1 - Nirmalananthan-Budau, Nithiya A1 - Resch-Genger, Ute A1 - Sekar, N. T1 - Coumarin-rhodamine hybrids-novel probes for the optical measurements of viscosity and polarity JF - Journal of Fluorescence N2 - A comprehensive systematic study of Absorption and fluorescence properties in solvents of varying viscosity and polarity of three novel and red-emitting coumarin-rhodamine hybrid derivatives with differences in the rigidity of their substituents is presented. This includes ethanol-polyethylene glycol, toluene-polyethylene glycol, and tolueneparaffin mixtures. Moreover, protonation-induced effects on the spectroscopic properties are studied. A viscosity-induced emission enhancement was observed for all coumarin-rhodamine hybrid derivatives. MCR2 bearing a julolidine donor showed the expected low sensitivity to viscosity whereas MCR3 with its freely rotatable diphenylamino Substituent revealed a particularly pronounced sensitivity to this parameter. Moreover, MCR2 shows an enhancement in Emission in the open, i.e., protonated form in conjunction with a largely Stokes shift fluorescence in the deep red spectral region. This enables the application of these dyes as viscosity sensors and as far red emitting pH-sensitive probes. KW - Fluorescence KW - Dye KW - Quantum yield KW - Viscosity KW - Polarity KW - Environment KW - Probe KW - Coumarin KW - Rhodamine KW - Synthesis PY - 2017 DO - https://doi.org/10.1007/s10895-017-2165-4 SN - 1573-4994 SN - 1053-0509 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. VL - 27 IS - 6 SP - 1949 EP - 1956 PB - CrossMark AN - OPUS4-42584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -