TY - JOUR A1 - Böllinghaus, Thomas A1 - Steffens, B. R. A1 - Rhode, Michael A1 - Shoales, G.A. T1 - Hydrogen Assisted Stress Corrosion Cracking Related Material Properties of ServiceApplied Landing Gear Ultra-High Strength Steels N2 - Aircraft main landing gear (MLG) components are commonly manufactured from low-alloyed, martensitic, ultra-high strength steels (UHSS) that have to be coated for corrosion protection, representing an expensive and environmentally harmful production step. To avoid already partly banned corrosion protection plating, the new high-alloyed UHSS, Ferrium S53 (UNS S10500), has been designed to replace lowalloyed legacy materials and has been subjected to a limited field test over five years. As with the legacy alloys, UNS S10500 has a fully hardened martensitic microstructure known to be susceptible to hydrogen assisted cracking, per se. Containing about 10 wt% Cr, steels such as S10500 are at the lower limit for corrosion resistant alloys. Similar to super-martensitic stainless steels used in the oil and gas industry, a common failure sequence in marine environments represents pitting and subsequent hydrogen assisted stress corrosion cracking (HASCC). For addressing such phenomena quantitively, as required for respective lifetime assessments of MLG components and systems, the tolerance of such materials dependent on the absorbed hydrogen concentration must be evaluated quantitatively. However, there is a lack of such valuable materials data, as well as of the fractographic behavior dependent on the hydrogen concentration that might be absorbed during HASCC. To provide an improved understanding of the hydrogen dependent mechanical and fractographic behavior, samples of the legacy AISI 4340 and the new S10500 MLG steels have electrochemically been hydrogen-saturated and subjected to tensile testing. In contrast to a previous study, this contribution for the first time focuses on materials that have been salvaged from real service used landing gear components. In this study, it has been demonstrated that the service-applied S10500 steel has not only a higher strength, but also an improved ductility in comparison to the legacy AISI 4340 steel after similar service durations that provides a higher tolerance against hydrogen concentrations that might be absorbed during potential pitting and HASCC in marine environments. In addition, it has been found that the absorbed hydrogen concentration significantly affects the fracture behavior. Interestingly, hardening of the hydrogen charged low-alloyed AISI 4340 steel changes the fracture topography from trans- toward intergranular, while hardening of the S10500 steel turned the fracture topography from inter- to transgranular at respectively high hydrogen concentrations. KW - Hydrogen assisted stress corrosion cracking KW - Ultra-high strength steel KW - Martensite KW - Modeling KW - Hydrogen dependent mechanical properties PY - 2019 U6 - https://doi.org/10.5006/3028 SN - 0010-9312 SN - 1938-159X VL - 75 IS - 5 SP - 513 EP - 524 PB - NACE International AN - OPUS4-49530 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Viyanit, E. A1 - Keawkumsaia, S. A1 - Wongpinkeawa, K. A1 - Bunchoo, N. A1 - Khonraeng, W. A1 - Trachoob, T. A1 - Böllinghaus, Thomas T1 - Hydrogen assisted cracking of an AISI 321 stainless steel seamless pipe exposed to hydrogen-containing hot gas at high pressure N2 - A seamless pipe made of AISI 321 stainless steel represented a part of a transportation Pipeline system for hydrogen-containing hot gas in a hydrocarbon cracking unit. After a service period of approximately 21 months, a segment of such pipe demonstrated the cracks, causing leakage and respective fire. For clarification of a failure root cause, various metallurgical investigations combined with numerical simulations have been applied. The results revealed that the rupture of seamless pipe was evidently influenced by hydrogen assisted cracking (HAC). An increased susceptibility of the alloy to HAC had to be attributed to its sensitive microstructure which was related to the occurrence of slip bands with a high quantity in austenite grains, particularly in the specific region underneath the outer wall surface. In addition, the intensity of restraint resulting from the T-joint weld configuration caused respectively higher triaxial stresses in the confined area on the outer wall surface where the crack started. The numerical simulations of hydrogen diffusion revealed that a uniform hydrogen concentration profile over the pipe wall thickness was reached when the service period was more than 20 months. This duration agreed well to the timeto-failure of the actual component. Considering additionally that the final stage of rupture by overload was preceded by severe HAC, as confirmed by the respective intergranular fracture topography. KW - Hydrogen-containing hot gas KW - AISI 321 stainless steel KW - Hydrogen assisted cracking KW - Intergranular cracking PY - 2019 U6 - https://doi.org/10.1016/j.engfailanal.2019.02.037 SN - 1350-6307 SN - 1873-1961 VL - 100 SP - 288 EP - 299 PB - Elsevier Ltd. AN - OPUS4-49617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Böllinghaus, Thomas A1 - Rhode, Michael A1 - Falkenreck, T. ED - Bender, B. ED - Göhlich, D. T1 - Korrosion und Korrosionsschutz N2 - Das Kapitel beginnt mit einer kurzen Einführung über die Korrosion (Wechselwirkung zwischen einem Metall, einer korrosiven Umgebung und der der jeweiligen Konstruktion). Im zweiten Abschnitt werden die wichtigsten Formen der wässrigen elektrochemischen Korrosion (Flächenkorrosion, galvanische, selektive und interkristalline Korrosion sowie Loch- und Spaltkorrosion) betrachtet. Darüber hinaus wird die elektrochemische Korrosion unter mechanischer Belastung betrachtet (Spannungsrisskorrosion, wasserstoffunterstützte Rissbildung, Korrosionsermüdung), sowie Sonderformen der Korrosion (Erosion, Fretting und mikrobiologisch induzierte Korrosion). Der dritte Abschnitt befasst sich mit der chemischen und Hochtemperaturkorrosion (Oxidation, Aufkohlung, Hochtemperatur-Wasserstoffangriff, Aufschwefelung, Nitrierung, Halogenierung). Zusätzlich enthält das Kapitel Maßnahmen zur Vermeidung der Korrosion. KW - Korrosion KW - Korrosionsschutz KW - Spannungsrisskorrosion KW - Wasserstoff KW - Loch- u. Spaltkorrosion PY - 2021 SN - 978-3-662-59710-1 U6 - https://doi.org/10.1007/978-3-662-59711-8_34 VL - 1 SP - 691 EP - 725 PB - Springer-Verlag GmbH, ein Teil von Springer Nature CY - Berlin ET - 26 AN - OPUS4-52156 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Böllinghaus, Thomas A1 - Rhode, Michael A1 - Falkenreck, T. ED - Grote, K.-H. ED - Hefazi, H. T1 - 6. Corrosion and Corrosion Resistance N2 - The chapter starts with a brief introduction about corrosion, which is defined as the interdependency between a metal, a corrosive environment, and the respective component design. The second section introduces the most important forms of aqueous electrochemical corrosion (uniform corrosion, galvanic corrosion, selective and intergranular corrosion, and finally pitting and crevice corrosion in the case of passive layer forming metals). In addition, electrochemical corrosion under applied mechanical load is introduced (stress corrosion cracking, hydrogen-assisted cracking, corrosion fatigue), as well as special forms of corrosion (erosion, fretting, and microbiologically induced corrosion). The third section of this chapter introduces (mostly dry) chemical corrosion and high-temperature corrosion (oxidation, carburization, high-temperature hydrogen attack, sulfurization, nitriding, halogenation). As in the case of electrochemical corrosion, chemical corrosion can also be superimposed by mechanical loads. Finally, general facts on the testing of corrosion are introduced. KW - Corrosion KW - Corrosion testing KW - Handbook KW - Electrochemical corrosion KW - Chemical corrosion PY - 2021 SN - 978-3-030-47035-7 U6 - https://doi.org/10.1007/978-3-030-47035-7_6 VL - 2021 SP - 185 EP - 213 PB - Springer Nature Switzerland AG CY - Cham (CH) ET - 2nd Edition AN - OPUS4-52423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobol, Oded A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Eliezer, D. A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Novel approach to image hydrogen distribution and related phase transformation in duplex stainless steels at the sub-micron scale N2 - The effect of electrochemical charging of hydrogen on the structure of a lean duplex stainless steel LDX 2101® (EN 1.4162, UNS S32101) was examined by both Time-of-Flight secondary ion mass spectrometry and electron back-scatter diffraction. The goal is to correlate hydrogen concentration and induced structural changes. Chemical and structural characterizations were done for the same region at the sample's surface with sub-micron spatial resolution. Regions of interest were varying in size between 50 × 50 μm and 100 × 100 μm. The results show a phase transformation of austenite to mainly a defect-rich BCC and scarcely a HCP phase. The phase transformation occurred in deuterium rich regions in the austenite. KW - Time-of-flight secondary ion mass spectrometry KW - ToF-SIMS KW - Electron backscatter diffraction KW - EBSD KW - Hydrogen-assisted cracking KW - Data fusion KW - Lean duplex stainless steel PY - 2017 U6 - https://doi.org/10.1016/j.ijhydene.2017.08.016 SN - 0360-3199 VL - 42 IS - 39 SP - 25114 EP - 25120 AN - OPUS4-42022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rhode, Michael A1 - Münster, C. A1 - Mente, Tobias A1 - Böllinghaus, Thomas ED - Somerday, B.P. ED - Sofronis, P. T1 - Influence of experimental conditions and calculation method on hydrogen diffusion coefficient evaluation at elevated temperatures N2 - Literature provides a wide range of hydrogen diffusion coefficients for low alloyed steels used in power plants. In fact, experimental boundary conditions and calculation methods have influence on the determination of these coefficients. The diffusion and trapping behavior in creep-resistant steel 7CrMoVTiB10-10 has been studied. Based on experimental carrier gas hot extraction (CGHE) data, a numerical model has been developed to describe the hydrogen transport and respective hydrogen distribution at elevated temperatures. The numerical results suggest that common calculation methods for diffusion coefficients are limited for experimental data analysis. The sample preparation time before CGHE experiment influences the determined diffusion coefficients with the consequence that non-homogeneous hydrogen concentration profiles have to be considered in the simulations. KW - Temperature effect KW - Hydrogen diffusion KW - Creep-resistant steel KW - Hydrogen assisted cracking KW - Carrier gas hot extraction PY - 2017 SN - 978-0-7918-6138-7 U6 - https://doi.org/10.1115/1.861387_ch56 SP - 495 EP - 503 PB - ASME CY - New York, USA ET - 1 AN - OPUS4-42502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steffens, B. R. A1 - Böllinghaus, Thomas A1 - Shoales, G. A. A1 - Rhode, Michael ED - Somerday, B. P. ED - Sofronis, P. T1 - Hydrogen dependent material properties of UHSS for aerospace applications N2 - Quantitative investigations of hydrogen dependent properties of aircraft landing gear materials have only scarcely been carried out in the past. They are essential for respective component life time assessments. To better understand the behavior of these landing gear materials in a hydrogen rich environment, specimens were charged in the condition as delivered with known concentrations of hydrogen and then mechanically tested to evaluate the degradation effects. The present contribution is focused on evaluating the hydrogen concentration dependent material properties and the respective fracture topographies of the two investigated steels, and then continued by the comparison of the results with other previously investigated martensitic steels in order to better understand the thresholds for these materials to maintain structural integrity. T2 - International Hydrogen Conference 2016 CY - Jackson Lake Lodge, Moran, WY, USA DA - 11.09.2016 KW - Material properties KW - Hydrogen assisted cracking KW - Degradation KW - Aerospace materials KW - Ultra high strength steels PY - 2017 SN - 978-0-7918-6138-7 U6 - https://doi.org/10.1115/1.861387_ch12 SP - 123 EP - 131 PB - ASME CY - New York, USA AN - OPUS4-42504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silverstein, R. A1 - Eliezer, D. A1 - Böllinghaus, Thomas T1 - Hydrogen-trapping mechanisms of TIG-welded 316L austenitic stainless steels N2 - The interaction of hydrogen with various tungsten-inert-gas-welded austenitic stainless steels’ (AUSS) microstructure is studied by means of desorption/absorption analysis and microstructure observations. One of the limitations of welding is created by the presence of hydrogen in the weld, which can shorten the steel’s service life. The local hydrogen concentration, trapping, and its distribution along the welded samples were studied by thermal desorption spectrometry and were supported by X-ray diffraction (XRD) and electronic microstructural observations. Hydrogen content demonstrated a dependence on the welding zone. It was found that hydrogen distribution, and accepted microstructure during welding, played a significant role in the trapping mechanism of 316L AUSS. XRD analysis revealed residual stresses which were caused due to the presence of hydrogen in c-phase. It was shown that the austenite microconstituents inside 316L can have a crucial effect in preventing hydrogen-assisted cracking phenomenon. The effects of AUSS microstructure on hydrogen absorption and desorption behavior are discussed in detail. KW - Thermal-desorption spectroscopy KW - Ferritic steels KW - Strain rates KW - Duplex KW - Embrittlement KW - Diffusion KW - Titanium KW - Alloys KW - Behavior PY - 2018 U6 - https://doi.org/10.1007/s10853-018-2349-6 SN - 1573-4803 SN - 0022-2461 VL - 53 IS - 14 SP - 10457 EP - 10468 PB - Springer Science + Business Media CY - Dordrecht AN - OPUS4-46833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Gröber, Andre A1 - Böllinghaus, Thomas A1 - Kranzmann, Axel T1 - Corrosion fatigue of 1.4542 exposed to a laboratory saline aquifer water CCS-environment N2 - X5CrNiCuNb16-4 has been proven to be sufficient resistant in corrosive environments, but shows rather unusual corrosion behaviour in CCS environment. Therefore a series of 30 specimens was tested at stress amplitudes between 150 MPa and 500 MPa (sinusoidal dynamic test loads, R=-1; resonant frequency ∼ 30 Hz). Due to the rather heterogeneous fine machined surfaces (Rz=4) the specimens are comparable with prefabricated parts. X5CrNiCuNb16-4 reached the maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa and lies 60% below the stress amplitude measured in air. The scatter range TN = 1:34 is disproportionately large. Although the fracture surface exhibited the typical striations and corroded surface areas no significant differences were found. The hardness was found to be homogeneous in all specimens tested at 335 HV10. Non-metallic inclusions were found within the microstructure, but no correlation could be found between the inclusions and early rupture. Still specimens that showed inclusions at the fracture surface and its cross section endured lower number of cycles. Additionally Aluminium was analysed in specimens with low number of cycles and may be cause for early rupture during corrosion fatigue tests. These findings reveal a very high sensitivity on a homogeneous microstructure upon the corrosion and corrosion fatigue behaviour of X5CrNiCuNb16-4 and needs to be taken into account when regarding this steel as pipe steel during injection of CO2 into saline aquifers. T2 - 13th International Conference on Greenhouse Gas Control Technologies CY - Lausanne, Switzerland DA - 14.11.2016 KW - Steel KW - Corrosion fatigue KW - Electrochemistry KW - Reliability KW - CCS KW - CO2-storage PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-418525 SN - 1876-6102 VL - 114 SP - 5219 EP - 5228 AN - OPUS4-41852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenreck, Thora A1 - Klein, M. A1 - Böllinghaus, Thomas T1 - Dynamic compressive behaviour of weld joints N2 - Materials used in military applications have to withstand multiple threats like ballistics and explosions. Thus, high-strength low alloyed (HSLA) steels are used. The main joining technique for metals is welding. Therefore, analysing the dynamic impact behaviour of high-strength welds is very important to fulfil these demands. Investigation of welds at high strain rates has rarely been conducted in the past. To determine the dynamic impact behaviour of hybrid laser-arc welds, the Split Hopkinson Pressure Bar (SHPB) technique was used. The base material was a quenched and tempered fine-grained armour steel with yield strength of 1100 MPa. First, a full hybrid laser-arc weld was investigated by extracting specimens consisting of weld metal and heat affected base material. The influence of two variables, the cooling time between 800 °C and 500 °C (t8/5) and strength of filler material, on the impact behaviour was studied. The cooling time t8/5 was varied by preheating to influence the microstructure in the HAZ and to analyse the effect on the hardness and dynamic compressive strength. Subsequent analysis to detail the original Investigation was carried out by dilatometer heat treatment of specimens to create homogenous subzones of the weld. These specimens have a homogenous microstructure of HAZ and were tested by SHPB to determine the stress-strain characteristics for the different microstructures of HAZ. The results of the weld specimen showed the effect of preheating and filler material strength on the dynamic compressive behaviour. The analysis of the different microstructures of the HAZ indicated that especially the tempered microstructure caused a reduction in dynamic compressive strength. KW - SHPB KW - Hybrid laser-arc weld KW - Dilatometry PY - 2017 U6 - https://doi.org/10.1016/j.msea.2017.07.032 SN - 0921-5093 SN - 1873-4936 VL - 702 SP - 322 EP - 330 AN - OPUS4-41904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -