TY - JOUR A1 - Denißen, M. A1 - Nirmalananthan-Budau, Nithiya A1 - Behnke, Thomas A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute A1 - Müller, T. J. J. T1 - 3-Piperazinyl propenylidene indolone merocyanines: consecutive three-component synthesis and electronic properties of solid-state luminophores with AIE properties JF - MATERIALS CHEMISTRY FRONTIERS N2 - A series of twelve 3-piperazinyl propenylidene indolone merocyanines was synthesized in a one-pot fashion using a consecutive three-component insertion-coupling-Michael addition sequence. Physicalorganic treatment of the absorption data of a consanguineous series of this library allows semiquantitative Linear Free Energy Relationships (LFERs) to be established and confirmation of the positive Absorption solvatochromicity. All Boc-substituted piperazinyl merocyanines display aggregation induced Emission (AIE), which was corroborated for two solvent systems. In particular, crystallization-induced Emission enhancement (CIEE) induced by ultrasonication could be shown for a model chromophore by confocal laser scanning microscopy (CLSM). KW - Indolone merocyanines KW - AIE KW - CIEE KW - CLSM PY - 2017 DO - https://doi.org/10.1039/c7qm00198c SN - 2052-1537 N1 - Geburtsname von Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. - Birth name of Nirmalananthan-Budau, Nithiya: Nirmalananthan, N. VL - 1 IS - 10 SP - 2013 EP - 2026 AN - OPUS4-43213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Pérez Alonso, M. A1 - Albarrán Sanz, J. A1 - Dinkel, M. A1 - Heckel, Thomas A1 - Kotschate, Daniel A1 - Cabeza, Sandra A1 - Senaneuch, J. A1 - Heikkila, I. A1 - Toscanelli, O. T1 - A novel approach for rating fatigue-initiating inclusions in highly demanding steel (INCAFAT) T2 - EU publications N2 - INCAFAT project aimed to improve existing fatigue damage models by establishing the most suitable combination of measurement techniques to characterise harmful inclusion populations in highly demanding steels. The different inclusion assessments carried out confirm that, chemical composition, secondary metallurgy and manufacturing route affect content, nature, size and shape of inclusions. According to the FEM model, inclusions produce an alteration of the stress field in their surrounding region, which can promote a fatigue failure. Experimental work on fatigue testing has demonstrated that depending on the stressed direction fatigue failures in highly demanding steels could be produced by different types of inclusions. Fractography analyses confirmed that meso-inclusions harmful in fatigue cannot be rated by standard methods, nor 10 MHz ultrasonic testing (macro) or micro-cleanness assessments. The necessity of rating these meso-inclusions has led to critical evaluation of Extreme Value Analysis according to ASTM E2283-08 and the development of high frequency immersion ultrasonic testing. EVA methodology based on inclusion width can be applied reliably when principal stress is parallel to the rolling direction. On the contrary, if inclusions are testing in the elongated directions its fails. On the other hand, the guidelines and recommendations for high frequency ultrasonic testing have been compiled in a new European standard draft. This method based on focal beam probes and high-resolution devices is able to provide information on meso-inclusion distribution. KW - Material characterisation KW - Non-destructive testing KW - Ultrasonic testing KW - Cleanliness PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479219 UR - https://publications.europa.eu/en/publication-detail/-/publication/6bd25206-316a-11e8-b5fe-01aa75ed71a1/language-en/format-PDF/source-68610160 SN - 978-92-79-76985-6 DO - https://doi.org/10.2777/473350 SN - 1831-9424 SN - 1018-5593 SP - 1 EP - 154 AN - OPUS4-47921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Christina A1 - Bertovic, Marija A1 - Holstein, R. A1 - Kanzler, Daniel A1 - Pitkänen, J. A1 - Ronneteg, U. A1 - Heckel, Thomas T1 - A plenary view on the vigour of our NDE reliability models T2 - 5th European-American workshop on reliability of NDE N2 - Using the Modular Reliability Model the three different main influencing elements, i.e. intrinsic capability (IC), application parameters (AP) and the human factors (HF), are, in the first instance, investigated separately. The intrinsic capability stands for the pure physical-technological process of the signal detection caused by the waves or the rays from a material defect in the presence of noise (driven by the material and the devices). This intrinsic capability is the upper bound of the possible reliability. Already when measuring this intrinsic capability for thick walled components the original one-parameter POD must be extended to a multiparameter POD, where, in addition to the defect size, a number of additional physical parameters, such as the grain size distribution (or attenuation), defect depth, and angle or surface roughness, must be considered. For real life cycle assessments it is necessary to evaluate the signal response from real defects. The industrial application factors, e.g. coupling conditions, limited accessibility, heat and environmental vibrations, diminish the reliability. The amount of reduction can be determined quantitatively, if the underlying conditions are controlled. In case they are not controlled it is necessary to count for a fluctuation in the reliability in the field anyway. The third group of important influencing factors are the human factors, which do not only cover the individual performance capability of the inspectors but also the design of the working place,the procedure, the teamwork quality, interaction with systems, the organization, and finally, the relationship between the companies involved in the inspection process and to which extend the responsible parties are aware of it. When comparing an “ideal inspection” with a “real inspection” it is worth while to look how the existing practices, rules and standards support reliable testing and where the “delta” is. In the context of vigor, with respect to the industrial end user, it needs to be shown how the level of reliability of NDE, influenced by the different factors, has an impact on acceptance or rejection of safety critical parts. T2 - 5th European-American workshop on reliability of NDE CY - Berlin, Germany DA - 07.10.2013 PY - 2013 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-312658 SN - 978-3-940283-53-5 IS - DGZfP-BB 144 SP - Lecture 2, 1 EP - 18 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung (DGZfP) CY - Berlin AN - OPUS4-31265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, Jeffey Paulo H. A1 - Tobler, Dominique J. A1 - Thomas, Andrew N. A1 - Freeman, Helen M. A1 - Dideriksen, Knud A1 - Radnik, Jörg A1 - Benning, Liane G. T1 - Adsorption and reduction of arsenate during the Fe2+-induced transformation of ferrihydrite JF - ACS EARTH AND SPACE CHEMISTRY N2 - Iron (oxyhydr)oxides play an important role in controlling the mobility and toxicity of arsenic (As) in contaminated soils and groundwaters. However, dynamic subsurface geochemical conditions can potentially impact As sequestration since this is highly dependent on the dominant iron mineral phases present and the pathways through which they form. In this study, we investigated the Fe2+-induced transformation of As(V)-bearing ferrihydrite (As-FH) to more crystalline phases under relevant anoxic subsurface conditions. Specifically, we examined the influence of varying Fe2+(aq)/Fe(III)solid¬ ratios on the behavior and speciation of the mineral-bound As species during the mineralogical transformation of As-FH at pH 6.5 for 24 h. At lower Fe2+(aq)/Fe(III)solid¬ ratios (0.5 to 1), goethite, green rust sulfate (GR¬SO4) and lepidocrocite formed within the first 2 hours of the reaction, but only goethite and some unreacted FH remained after 24 h. At Fe2+(aq)/Fe(III)solid¬ ratio = 2, GRSO4 remained stable throughout the 24 h reaction, alongside goethite and unreacted FH. Despite >82% of the As-FH being transformed to goethite  GRSO4 in these reactions, no significant As release (>99.9% removal) was observed. However, while As remained mineral-bound, partial oxidation of the initially added As(V) was reduced to As(III), most likely, by the goethite-Fe2+(aq) redox couple. The extent of As(V) reduction increased from ~40% to ~50%, as the Fe2+(aq)/Fe(III)solid¬ ratio increased from 0.5 to 2. Overall, these results provide important insights into transformation pathways of iron (oxyhydr)oxide minerals in As contaminated, anoxic soils and sediments, and also demonstrate the great impact these can have on As oxidation state and, hence, toxicity and mobility in these environments. KW - Ferrihydrite KW - Mineral tranformation KW - XPS KW - Green rust KW - Goethite KW - XAS PY - 2019 DO - https://doi.org/10.1021/acsearthspacechem.9b00031 SN - 2472-3452 VL - 3 IS - 6 SP - 884 EP - 894 PB - ACS AN - OPUS4-48436 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Debatin, F. A1 - Behrens, K. A1 - Weber, J. A1 - Baburin, I. A. A1 - Thomas, A. A1 - Schmidt, J. A1 - Senkovska, I. A1 - Kaskel, S. A1 - Kelling, A. A1 - Hedin, N. A1 - Bacsik, Z. A1 - Leoni, S. A1 - Seifert, G. A1 - Jäger, Christian A1 - Günter, C. A1 - Schilde, U. A1 - Friedrich, A. A1 - Holdt, H.-J. T1 - An isoreticular family of microporous metal-organic frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate: syntheses, structures and properties JF - Chemistry - A European journal N2 - We report on a new series of isoreticular frameworks based on zinc and 2-substituted imidazolate-4-amide-5-imidate (IFP-1–4, IFP=imidazolate framework Potsdam) that form one-dimensional, microporous hexagonal channels. Varying R in the 2-substitued linker (R=Me (IFP-1), Cl (IFP-2), Br (IFP-3), Et (IFP-4)) allowed the channel diameter (4.0–1.7 Å), the polarisability and functionality of the channel walls to be tuned. Frameworks IFP-2, IFP-3 and IFP-4 are isostructural to previously reported IFP-1. The structures of IFP-2 and IFP-3 were solved by X-ray crystallographic analyses. The structure of IFP-4 was determined by a combination of PXRD and structure modelling and was confirmed by IR spectroscopy and 1H MAS and 13C CP-MAS NMR spectroscopy. All IFPs showed high thermal stability (345–400°C); IFP-1 and IFP-4 were stable in boiling water for 7 d. A detailed porosity analysis was performed on the basis of adsorption measurements by using various gases. The potential of the materials to undergo specific interactions with CO2 was investigated by measuring the isosteric heats of adsorption. The capacity to adsorb CH4 (at 298 K), CO2 (at 298 K) and H2 (at 77 K) at high pressure were also investigated. In situ IR spectroscopy showed that CO2 is physisorbed on IFP-1–4 under dry conditions and that both CO2 and H2O are physisorbed on IFP-1 under moist conditions. KW - Adsorption KW - Metal-organic frameworks KW - Microporous materials KW - N,O ligands KW - Zinc PY - 2012 DO - https://doi.org/10.1002/chem.201200889 SN - 0947-6539 SN - 1521-3765 VL - 18 IS - 37 SP - 11630 EP - 11640 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-27725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eschlböck-Fuchs, S. A1 - Huber, N. A1 - Ahamer, C. M. A1 - Hechenberger, J. G. A1 - Kolmhofer, P. J. A1 - Heitz, J. A1 - Rössler, R. A1 - Demidov, Alexander A1 - Schmid, Thomas A1 - Gornushkin, Igor B. A1 - Panne, Ulrich A1 - Pedarnig, J. D. T1 - Application of laser-induced breakdown spectroscopy for the analysis of slags in industrial steel production T2 - Tagungsband – 11. Kolloquium Prozessanalytik N2 - Laser-induced breakdown spectroscopy (LIBS) is a fast and versatile technique for (semi) quantitative element analysis of solids, liquids, gases, and particulate matter. The LIBS method is used for optical sensing in various branches of industrial production. In the contribution we review some of our recent results on LIBS analysis of slags from secondary metallurgy in industrial steel making. Major oxides in steel slags are measured at-line and after homogenization using a calibration-free (CF) method. Two approaches for CF analysis based on the Boltzmann plot method and on the calculation of synthetic spectra are compared for the analysis of quaternary oxides. We also present the research in cooperation with our industrial partners in the process-analytical chemistry network PAC. T2 - 11. Kolloquium Arbeitskreis Prozessanalytik CY - Vienna, Austria DA - 30.11.2015 KW - Laser-induced breakdown spectroscopy (LIBS) KW - Process analytical technology KW - Steel slag PY - 2015 PB - Plandruck+ Gesellschaft m.b.H. CY - Wien AN - OPUS4-39005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schubnell, J. A1 - Konidena, S. K. A1 - Jung, M. A1 - Braun, M. A1 - Ehlers, S. A1 - Madia, Mauro A1 - Kannengießer, Thomas A1 - Löschner, D. T1 - Approach for the probabilistic fatigue assessment of welded joints based on the local geometry of the weld seam JF - Fatigue and Fracture Engineering Materials and Structures N2 - Welded joints show large variation of the weld toe geometry along the weld seam, which is one important reason for the comparably large scatter in fatigue life. Therefore, it is crucial to take the local geometry at the weld toe into account, to reduce the conservatism in fatigue assessment of welded joints. This study is based on the IBESS procedure for the calculation of the fatigue strength, whereby the evaluation of local geometrical parameters is carried out by means of 3D surface scans. The approach is validated against 26 fatigue test series. The fatigue life is in general overpredicted, whereas good agreement is achieved for high stress ratio (R = 0.5). A sensitivity analysis conducted with IBESS shows that weld toe radii ρ < 2 mm and flank angle α < 30° have a significant influence on the calculated fatigue strength. In contrast to this, no strong correlation between ρ and the fatigue strength was determined experimentally in this study. KW - 3D Scanning KW - Fatigue Strength KW - Fracture Mechanics KW - IBESS Approach KW - Local Weld Geometry KW - Welded Joints PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585700 DO - https://doi.org/10.1111/ffe.14170 SN - 8756-758X SP - 1 EP - 20 PB - Wiley AN - OPUS4-58570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Thomas, Maximilian A1 - Kannengießer, Thomas A1 - Gibmeier, J. A1 - Vollert, F. T1 - Assessment of the Solidification Cracking Susceptibility of Welding Consumables in the Varestraint Test by Means of an Extended Evaluation Methodology JF - Advanced Engineering Materials N2 - Various test methods are available for assessing the susceptibility of materials to solidification cracking during welding. In the widely used Varestraint test, the crack length is selected as a criterion as a function of the applied bending strain. Unfortunately, the crack length does not characterize the material behavior alone but depends to varying degrees on the individual test parameters used, which makes the interpretation of the results difficult. In addition, the crack length is not comparable under different test conditions. To overcome these disadvantages, we have developed a novel evaluation methodology that decouples the machine influence from the material behavior. The measured crack length is related to the maximum possible value specified by welding speed and deformation time. This relative crack length is calculated numerically, considering the orientation of the cracks. Experiments on two high-alloy martensitic welding consumables show that, in contrast to the conventional evaluation, a comparison of different welding parameters becomes possible. Furthermore, the strain rate proved to be a suitable crack criterion in agreement with Prokhorov's hot cracking model. KW - Welding KW - Solidification cracking KW - Varestraint test PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545780 DO - https://doi.org/10.1002/adem.202101650 SN - 1438-1656 SP - 2101650 PB - Wiley online library AN - OPUS4-54578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dariz, P. A1 - Neubauer, J. A1 - Goetz-Neunhoeffer, F. A1 - Schmid, Thomas T1 - Calcium aluminates in clinker remnants as marker phases for various types of 19th-century cement studied by Raman microspectroscopy JF - European Journal of Mineralogy N2 - In the second half of the 19th century, Roman and Portland cements played an essential role as active hydraulic binder material in building construction and façade ornamentation. Size and heterogeneous phase assemblage of unhydrated cement clinker remnants in historical cement stone differ significantly from those of remnants occurring in modern Portland cement clinker burnt in rotary kilns due to limitations of the production technology available in the 19th century (e.g., comminution and homogeneity of the feedstock, burning temperature and regime in the intermittently operated shaft kilns, grinding machinery). In the common analytical approach, thin sections and fracture surfaces of historical Roman and Portland cement mortars are characterised regarding their mineralogical composition and microstructure using optical and electron microscopic imaging techniques. Raman microspectroscopy can be additionally employed for petrographic examination, overcoming some limitations of the methods used so far. The determination of the phase content of residual cement clinker grains in the hydrated matrix allows for the differentiation of Roman and Portland cement binders. As marker phases, we propose the calcium aluminates CA, C12A7, C2AS and C3A – besides the commonly used calcium silicates C2S and C3S – because of their different formation temperatures and stability fields. This study focuses on the identification of different calcium aluminate and aluminoferrite phases in clinker remnants in samples of cast ornaments of three buildings in Switzerland raised between 1875 and 1893; the obtained Raman spectra are compared with fingerprint spectra of the corresponding pure, synthesised clinker phases collected with the same instrument for an unambiguous data interpretation. In addition to these phases, mainly minerals showing no hydraulic activity, such as, wollastonite CS, rankinite C3S2, free lime, portlandite, iron oxides, garnets, augite, albite and feldspathoids have been identified in the sampled historical cement stones by Raman microspectroscopy. As there is a strong relationship between coexisting clinker phases and the chemical composition of the raw meal as well as the burning and cooling history during clinkering, the results can help in understanding the physical and mechanical characteristics of historical cement mortars. This knowledge is fundamental for the choice and the formulation of appropriate repair materials with tailored properties employed in the field of restoration and preservation of the architectural heritage of the 19th and early 20th centuries. KW - Roman cement KW - Meso Portland cement KW - Portland cement KW - Clinker relicts KW - Raman microspectroscopy PY - 2016 DO - https://doi.org/10.1127/ejm/2016/0028-2577 SN - 0935-1221 SN - 1617-4011 VL - 28 IS - 5 SP - 907 EP - 914 AN - OPUS4-39046 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Jang, J. S. A1 - Kim, A. S. A1 - Suh, J.K. A1 - Chung, Y.-D. A1 - Hodoroaba, Vasile-Dan A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Kang, H. J. A1 - Popov, O. A1 - Popov, I. A1 - Kuselman, I. A1 - Lee, Y. H. A1 - Sykes, D. E. A1 - Wang, M. A1 - Wang, H. A1 - Ogiwara, T. A1 - Nishio, M. A1 - Tanuma, S. A1 - Simons, D. A1 - Szakal, C. A1 - Osborn, W. A1 - Terauchi, S. A1 - Ito, M. A1 - Kurokawa, A. A1 - Fujiimoto, T. A1 - Jordaan, W. A1 - Jeong, C. S. A1 - Havelund, R. A1 - Spencer, S. A1 - Shard, A. A1 - Streeck, C. A1 - Beckhoff, B. A1 - Eicke, A. A1 - Terborg, R. T1 - CCQM pilot study P-140: Quantitative surface analysis of multi-element alloy films JF - Metrologia N2 - A pilot study for the quantitative surface analysis of multi-element alloy films has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this pilot study is to ensure the equivalency in the measurement capability of national metrology institutes for the quantification of multi-element alloy films. A Cu(In,Ga)Se2 (CIGS) film with non-uniform depth distribution was chosen as a representative multi-element alloy film. The atomic fractions of the reference and the test CIGS films were certified by isotope dilution - inductively coupled plasma/mass spectrometry. A total number counting (TNC) method was used as a method to determine the signal intensities of the constituent elements, which are compared with their certified atomic fractions. The atomic fractions of the CIGS films were measured by various methods, such as Secondary Ion Mass Spectrometry (SIMS), Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), X-Ray Fluorescence (XRF) analysis and Electron Probe Micro Analysis (EPMA) with Energy Dispersive X-ray Spectrometry (EDX). Fifteen laboratories from eight National Metrology Institutes (NMIs), one Designated Institute (DI) and six non-NMIs participated in this pilot study. Although the average atomic fractions of 18 data sets showed rather poor relative standard deviations of about 5.5 % to 6.8 %, they were greatly improved to about 1.5 % to 2.2 % by excluding 5 strongly deviating data sets from the average atomic fractions. In this pilot study, the average expanded uncertainties of SIMS, XPS, AES, XRF and EPMA were 3.84%, 3.68%, 3.81%, 2.88% and 2.90%, respectively. These values are much better than those in the key comparison K-67 for composition of a Fe-Ni alloy film. As a result, the quantification of CIGS films using the TNC method was found to be a good candidate as a subject for a CCQM key comparison. KW - CCQM KW - Pilot study KW - Surface analysis KW - Alloy films KW - CIGS PY - 2015 DO - https://doi.org/10.1088/0026-1394/52/1A/08017 SN - 0026-1394 SN - 1681-7575 VL - 52 IS - Technical Supplement SP - Article 08017 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-35306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -