TY - CONF A1 - Thiel, Erik A1 - Kreutzbruck, M. A1 - Ziegler, Mathias T1 - Laser projected photothermal thermography for characterizing hidden defects N2 - For the last 20 years active thermography has developed into a standard method in non-destructive material testing. It has become possible to detect defects such as cracks, voids, or even material inhomogeneities. Until now, it is still difficult to quantify subsurface or hidden defects in size due to the diffusive nature of heat flow within a solid. Facing this issue, lockin thermography and other photothermal techniques have been established. They are based on exciting a sample periodically (e.g. with a halogen lamp), causing a controlled periodical heat flow and thereby representing strongly damped thermal waves. These techniques make use of interference and reflection of thermal waves which allow enhancing depth resolution. So far, only the temporal component of the light source was modified to achieve a defined vertical heat flow – In contrast, we propose a novel technique in which we are able to control both: time and space. This technique enables us to exploit the possibilities of coherent thermal wave shaping. We achieve that by combining a spatial light modulator (SLM) with a high power laser. This approach allows us to launch a set of individually controlled and fully coherent high energy thermal waves into the sample volume. That means, we intentionally use wave propagation throughout the sample’s material in both - vertical and lateral direction. As one possible application, we use a thermal waves’ interference effect of two phase shifted wave patterns to detect the position of hidden defects. The wave patterns are positioned with a certain distance and a 180° phase shift to each other creating an amplitude depletion zone right in the middle of the two patterns. When a defect is brought unsymmetrically into the depletion zone, the lateral heat flow is disturbed. If the sample is now moved through the depletion zone, a defect can be easily characterized. Exciting periodically while controlling simultaneously phase and amplitude enables us to have a defined thermal wave propagation throughout the sample which means thermal waves can be controlled almost like acoustical or optical waves. This offers the opportunity to transfer known technologies from wave shaping techniques to thermography methods. T2 - 19th World Conference of Non-Destructive Testing 2016 CY - München, Germany DA - 13.06.2016 KW - Thermal waves KW - DMD KW - Active thermography KW - SLM PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365702 SP - Th.4.I.2 - 1 EP - Th.4.I.2 - 6 AN - OPUS4-36570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Kreutzbruck, M. A1 - Ziegler, Mathias T1 - Laser projected photothermal thermography for characterizing hidden defects N2 - For the last 20 years active thermography has developed into a standard method in non-destructive material testing. It has become possible to detect defects such as cracks, voids, or even material inhomogeneities. Until now, it is still difficult to quantify subsurface or hidden defects in size due to the diffusive nature of heat flow within a solid. Facing this issue, lockin thermography and other photothermal techniques have been established. They are based on exciting a sample periodically (e.g. with a halogen lamp), causing a controlled periodical heat flow and thereby representing strongly damped thermal waves. These techniques make use of interference and reflection of thermal waves which allow enhancing depth resolution. So far, only the temporal component of the light source was modified to achieve a defined vertical heat flow – In contrast, we propose a novel technique in which we are able to control both: time and space. This technique enables us to exploit the possibilities of coherent thermal wave shaping. We achieve that by combining a spatial light modulator (SLM) with a high power laser. This approach allows us to launch a set of individually controlled and fully coherent high energy thermal waves into the sample volume. That means, we intentionally use wave propagation throughout the sample’s material in both - vertical and lateral direction. As one possible application, we use a thermal waves’ interference effect of two phase shifted wave patterns to detect the position of hidden defects. The wave patterns are positioned with a certain distance and a 180° phase shift to each other creating an amplitude depletion zone right in the middle of the two patterns. When a defect is brought unsymmetrically into the depletion zone, the lateral heat flow is disturbed. If the sample is now moved through the depletion zone, a defect can be easily characterized. Exciting periodically while controlling simultaneously phase and amplitude enables us to have a defined thermal wave propagation throughout the sample which means thermal waves can be controlled almost like acoustical or optical waves. This offers the opportunity to transfer known technologies from wave shaping techniques to thermography methods. T2 - 19th World Conference of Non-Destructive Testing 2016 CY - München, Germany DA - 13.06.2016 KW - Thermal waves KW - DMD KW - Active thermography KW - SLM PY - 2016 AN - OPUS4-36577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Studemund, T. T1 - Thermography using a 1D laser array – From planar to structured heating N2 - In the field of optically excited thermography, flash lamps (impulse shaped planar heating) and halogen lamps (modulated planar heating) have become established for the specific regimes of impulse and lock-in thermography. Flying-spot laser thermography is implemented by means of a rasterized focused laser, e. g. for crack detection (continuous wave operation) and photothermal material characterization (high-frequency modulated). The availability of novel technologies, i. e. fast and high-resolution IR cameras, brilliant innovative light sources and high-performance data acquisition and processing technology will enable a paradigm shift from stand-alone photothermal and thermographic techniques to uniform quantitative measurement and testing technology that is faster and more precise. Similar to an LED array, but with irradiance two orders of magnitude higher, a new type of brilliant laser source, i. e. the VCSEL array (vertical-cavity surface-emitting laser), is now available. This novel optical energy source eliminates the strong limitation to the temporal dynamics of established light sources and at the same time is spectrally clearly separated from the detection wavelength. It combines the fast temporal behavior of a diode laser with the high optical irradiance and the wide illumination area of flash lamps. In addition, heating can also be carried out in a structured manner, because individual areas of the VCSEL array can be controlled independently of each other. This new degree of freedom enables the development of completely new thermographic NDT methods. KW - Thermography KW - Laser thermography KW - Laser KW - Lock-in KW - VCSEL KW - Thermal wave KW - Photothermal PY - 2018 UR - https://www.hanser-elibrary.com/doi/abs/10.3139/120.111209 DO - https://doi.org/10.3139/120.111209 SN - 0025-5300 VL - 60 IS - 7-8 SP - 749 EP - 757 PB - Carl Hanser Verlag CY - München AN - OPUS4-45482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim T1 - Lock-in Thermography using High-Power Laser Sources N2 - Optical lock-in thermography is a completely contactless and very sensitive NDT technique. As an optical source of energy, incandescent lamps are most commonly used because they are relatively inexpensive and offer high irradiances at the test specimen. However, they are strongly restricted by their low modulation bandwidth with a maximum modulation frequency of only about 1 Hz. The use of high-power kilowattclass laser sources, e.g. diode laser arrays, pushes this constraint beyond 100 Hz. This allows for the exploration of the near-surface region of metals and layer systems with better and more accurate penetration depth and depth resolution. Moreover, these lasers are virtually free of any additional thermal radiation that could interfere with the “true” thermal response emitted from the heated sample. In turn, they can be easily used in a one-sided test configuration. We present current activities with kilowatt-class highpower laser sources for advanced lock-in thermography and focus on the application of laser arrays that offer a very high irradiation strength over a large sample area beyond the mentioned advantages. T2 - 12th European Conference on Non-destructive Testing CY - Gothenburg, Sweden DA - 11.06.2018 KW - Thermography KW - Laser Thermography KW - Lock-in Thermography PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454466 UR - http://cdn.ecndt2018.com/wp-content/uploads/2018/05/ecndt-0139-2018.pdf SN - 978-91-639-6217-2 SP - ECNDT-0139-2018,1 EP - 7 AN - OPUS4-45446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Burgholzer, P. A1 - Berer, T. A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Ahmadi, Samim A1 - Gruber, J. A1 - Mayr, G. A1 - Hendorfer, G. T1 - Blind structured illumination as excitation for super-resolution photothermal radiometry N2 - Using an infrared camera for radiometric imaging allows the contactless temperature measurement of multiple surface pixels simultaneously. From the measured surface data, a sub-surface structure, embedded inside a sample or tissue, can be reconstructed and imaged when heated by an excitation light pulse. The main drawback in radiometric imaging is the degradation of the spatial resolution with increasing depth, which results in blurred images for deeper lying structures. We circumvent this degradation with blind structured illumination, combined with a non-linear joint sparsity reconstruction algorithm. The ground-breaking concept of super-resolution can be transferred from optics to thermographic imaging. T2 - Conference QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Laser thermography KW - Super resolution PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454506 SN - 978-3-940283-94-8 DO - https://doi.org/10.1080/17686733.2019.1655247 SP - We.3.A.2, 1 EP - 7 AN - OPUS4-45450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Kreutzbruck, M. A1 - Ziegler, Mathias T1 - Spatial and temporal control of thermal waves by using DMDs for interference based crack detection N2 - Active Thermography is a well-established non-destructive testing method and used to detect cracks, voids or material inhomogeneities. It is based on applying thermal energy to a samples’ surface whereas inner defects alter the non-stationary heat flow. Conventional excitation of a sample is hereby done spatially, either planar (e.g. using a lamp) or local (e.g. using a focused laser) and temporally, either pulsed or periodical. In this work we combine a high power laser with a Digital Micromirror Device (DMD) allowing us to merge all degrees of freedom to a spatially and temporally controlled heat source. This enables us to exploit the possibilities of coherent thermal wave shaping. Exciting periodically while controlling at the same time phase and amplitude of the illumination source induces – via absorption at the sample’s surface - a defined thermal wave propagation through a sample. That means thermal waves can be controlled almost like acoustical or optical waves. However, in contrast to optical or acoustical waves, thermal waves are highly damped due to the diffusive character of the thermal heat flow and therefore limited in penetration depth in relation to the achievable resolution. Nevertheless, the coherence length of thermal waves can be chosen in the mm-range for modulation frequencies below 10 Hz which is perfectly met by DMD technology. This approach gives us the opportunity to transfer known technologies from wave shaping techniques to thermography methods. We will present experiments on spatial and temporal wave shaping, demonstrating interference based crack detection. T2 - Photonics West 2016, OPTO, 9761 CY - San Francisco, Cal, USA DA - 15.02.2016 KW - Thermal Waves KW - Laser KW - DMD KW - Active Thermography PY - 2016 AN - OPUS4-35586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Döge, N. A1 - Thiel, Erik A1 - Seewald, G. T1 - Wide-field two photon microscopy - transcending technology limitations N2 - Two Photon Microscopy (2PM) generates microscopic images out of depth of biological samples. Up to now the method is restricted by narrow limitations of the field of view, the imaging depth and the orientation of the image field. A new approach overcomes these boundaries and delivers high resolution images revealing very specific information on clinically and biologically relevant tissue and cell structures. The status of the 2PM technology is critically reviewed and the options are discussed. The advantages of the new approach demonstrated by excellent tissue images. KW - Two photon microscopy KW - Cell imaging KW - Tissue imaging KW - Optical biopsy KW - Immunology KW - Oncology KW - Cosmetics KW - Collagen PY - 2015 DO - https://doi.org/10.1002/opph.201500035 SN - 1863-1460 VL - 10 IS - 5 SP - 29 EP - 42 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-35247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiel, Erik A1 - Ziegler, Mathias A1 - Studemund, Taarna T1 - Localization of subsurface defects in uncoated aluminum with structured heating using high-power VCSEL laser arrays N2 - We report on photothermal detection of subsurface defects by coherent superposition of thermal wave fields. This is made possible by structured heating using high-power VCSEL laser arrays whose individual emitter groups can be arbitrarily controlled. In order to locate the defects, we have developed a scanning method based on the continuous wavelet transformation with complex Morlet wavelet using the destructive interference effect of thermal waves. This approach can also be used for thermally very fast and highly reflective materials such as uncoated aluminum. We show that subsurface defects at an aspect ratio of defect width to defect depth down to 1/3 are still detectable in this material. KW - Thermography KW - Heat diffusion KW - Laser thermography KW - Structured heating KW - NDT KW - Subsurface defects KW - Thermal wave KW - VCSEL KW - Wavelet transformation PY - 2019 DO - https://doi.org/10.1007/s10765-018-2478-9 SN - 1572-9567 SN - 0195-928X VL - 40 IS - 2 SP - 17, 1 EP - 13 PB - Springer Science+Business Media, LLC, part of Springer Nature 2019 AN - OPUS4-47208 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik T1 - Novel thermographic methods for non-destructive testing using structured illumination N2 - Photothermal imaging is commonly used for the characterization of material properties, the determination of layer thicknesses or the detection of inhomogeneities such as voids or cracks. For this purpose, the solid specimen is externally heated, e.g. by using a light source. The resulting transient heat flows interact with the inner structures of the specimen, which in turn is measured as a transient temperature distribution at the surface. Novel array-shaped, high-power laser light sources allow to control the heating of the surface arbitrarily, both temporally and spatially. This enables us to shape the heat flows within the material in a very specific way. In a first application, we demonstrate how to apply destructively interfering thermal wave fields in order to detect subsurface defects with a very high sensitivity. A similar technique, although originating from a very different physical domain, is already in use for medical 3D imaging showing the high potential of this approach. T2 - Adlershofer For­schungs­forum 2017 CY - Berlin, Germany DA - 10.11.2017 KW - Active thermography KW - Photothermal KW - Crack detection KW - Thermal wave KW - Structured heating PY - 2017 AN - OPUS4-42835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Paul, Andrea A1 - Kranzmann, Axel A1 - Hilgenberg, Kai A1 - Pittner, Andreas A1 - Bruno, Giovanni A1 - Sommer, Konstantin A1 - Gumenyuk, Andrey T1 - Quality control in additive manufacturing via in-situ monitoring and non-destructive testing N2 - More than 80 representatives of SMEs, industrial companies and research institutes met on September 12 at the workshop "Challenges in Additive Manufacturing: Innovative Materials and Quality Control" at BAM in Adlershof to discuss the latest developments in materials and quality control in additive manufacturing. In special lectures, researchers, users and equipment manufacturers reported on the latest and future developments in additive manufacturing. Furthermore, funding opportunities for projects between SMEs and research institutions on a national and European level were presented. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control CY - Berlin, Germany DA - 12.09.2018 KW - Additive manufacturing KW - Quality control KW - Non-destructive testing KW - In-situ monitoring PY - 2018 AN - OPUS4-46072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -