TY - JOUR A1 - Lutz, J.-F. A1 - Kubowicz, St. A1 - Baussard, J.-F. A1 - Thünemann, Andreas A1 - v. Berlepsch, H. A1 - Laschewsky, A. T1 - Multicompartment Micelles Obtained via the Self-Assembly of a Well-Defined Triblock Macrosurfactant Prepared by RAFT Polymerization KW - Micelles KW - Living polymerization KW - RAFT KW - Block copolymers PY - 2005 SN - 0032-3934 VL - 46 IS - 2 SP - 297 EP - 298 PB - American Chemical Society CY - Newark, NJ AN - OPUS4-10534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lutz, J.-F. A1 - Thünemann, Andreas A1 - Nehring, R. T1 - Preparation by Controlled Radical Polymerization and Self-Assembly via Base-Recognition of Synthetic Polymers Bearing Complementary Nucleobases N2 - The radical polymerization of three monomers bearing nucleobases 1-(4-vinylbenzyl)thymine (VBT), 1-(4-vinylbenzyl)uracil (VBU) and 9-(4-vinylbenzyl)adenine (VBA) was investigated. The corresponding homopolymers could be prepared in high yields via conventional radical polymerization. However, the resulting polymers were found to be only soluble in a few polar solvents. On the other hand, copolymers of dodecyl methacrylate (DMA) with either VBT or VBA could be prepared via both free radical polymerization and atom transfer radical polymerization and could be dissolved in a large variety of organic solvents. Moreover, the formed complementary copolymers P(VBT-co-DMA) and P(VBA-co-DMA) were found to self-assemble in dilute solutions in dioxane or chloroform via base recognition, as evidenced by a significant hypochromicity effect in UV spectroscopy. Nevertheless, at higher concentrations in chloroform, both dynamic light scattering and optical microscopy indicate that P(VBT-co-DMA), P(VBA-co-DMA), or P(VBT-co-DMA)/P(VBA-co-DMA) mixtures spontaneously self-assemble into micron size spherical aggregates. 1H NMR and FTIR studies confirmed that the self-assembly process is driven in all cases via H-bond formation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4805-4818, 2005 KW - ATRP KW - Living polymerization KW - Nucleic acids KW - Polymersomes KW - Self-assembly PY - 2005 DO - https://doi.org/10.1002/pola.20976 SN - 0360-6376 SN - 0887-624X VL - 43 IS - 20 SP - 4805 EP - 4818 PB - Wiley CY - Hoboken, NJ AN - OPUS4-10842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kubowicz, St. A1 - Baussard, J.-F. A1 - Lutz, J.-F. A1 - Thünemann, Andreas A1 - v. Berlepsch, H. A1 - Laschewsky, A. T1 - Multicompartment Micelles Formed by Self-Assembly of Linear ABC Triblock Copolymers in Aqueous Medium KW - Small-angle x-ray scattering KW - Micelles PY - 2005 DO - https://doi.org/10.1002/anie.200500584 SN - 1433-7851 SN - 1521-3773 SN - 0570-0833 VL - 44 SP - 5262 EP - 5265 PB - Wiley-VCH CY - Weinheim AN - OPUS4-10537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lutz, J.-F. A1 - Thünemann, Andreas A1 - Rurack, Knut T1 - DNA-like "Melting" of Adenine- and Thymine-Functionalized Synthetic Copolymers KW - Polymers KW - Micelles KW - Amyloid beta-peptide KW - Proteins KW - Secondary structure PY - 2005 SN - 0024-9297 SN - 1520-5835 VL - 38 IS - 20 SP - 8124 EP - 8126 PB - American Chemical Society CY - Washington, DC AN - OPUS4-11068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lutz, J.-F. A1 - Nehring, R. A1 - Thünemann, Andreas T1 - Solution Self-Assembly of Synthetic Copolymers bearing Complementary Nucleic Acid Funtionalities KW - DNA KW - Living polymerization KW - ATRP KW - Copolymers PY - 2005 SN - 0032-3934 VL - 46 IS - 2 SP - 397 EP - 398 PB - American Chemical Society CY - Newark, NJ AN - OPUS4-10535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lindner, A. A1 - Menzel, Michael A1 - Renz, F. A1 - Kurth, D.G. A1 - Thünemann, Andreas T1 - Metallosupramolecular coordination polyelectrolytes investigated by Mössbauer spectroscopy N2 - Metallosupramolecular coordination polyelectrolytes (MEPEs) based on rigid and flexible ditopic bis-terpyridine ligands and Fe(II) ions are investigated by Mössbauer spectroscopy. We demonstrate the influence of mechanical stress induced by grinding on the structure of MEPE as well as the ability of MEPE to self-repair through recrystallisation. KW - Metallosupramolecular coordination polyelectrolyte KW - Bis-terpyridine KW - Mössbauer spectroscopy KW - Supramolecular chemistry PY - 2005 UR - http://www.edoc.mpg.de/298371 SN - 0304-3843 SN - 1572-9540 VL - 166 IS - 1-4 SP - 465 EP - 468 PB - Kluwer CY - Dordrecht AN - OPUS4-15729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lutz, J.-F. A1 - Pfeifer, S. A1 - Chanana, M. A1 - Thünemann, Andreas A1 - Bienert, Ralf T1 - H-Bonding-Directed Self-Assembly of Synthetic Copolymers Containing Nucleobases: Organization and Colloidal Fusion in a Noncompetitive Solvent N2 - The self-organization of random copolymers composed of a nucleobase monomer (either 1-(4-vinylbenzyl)thymine or 9-(4-vinylbenzyl)adenine) and dodecyl methacrylate (DMA) was studied in dilute chloroform solutions. The balance between the molar fractions of the nucleobase monomer (leading to intermolecular H-bonding) and DMA (soluble moiety in chloroform) in the polymer chains was found to be the parameter that principally influences the self-organization. DMA-rich copolymers are molecularly soluble in chloroform, whereas nucleobase-rich copolymers are insoluble in this solvent. Copolymers possessing an equimolar comonomer composition self-assemble into micrometer-sized particles physically cross-linked by intermolecular H-bonds (either thymine-thymine or adenine-adenine interactions, depending on the studied copolymer). Nevertheless, when mixed together, thymine- and adenine-based colloids fuse into thermodynamically stable microspheres cross linked by adenine-thymine interactions. KW - Synthetic polymers KW - Self-organization KW - H-bonding KW - Nucleobases KW - Confocal fluorescence microscopy PY - 2006 DO - https://doi.org/10.1021/la061382a SN - 0743-7463 SN - 1520-5827 VL - 22 IS - 17 SP - 7411 EP - 7415 PB - American Chemical Society CY - Washington, DC AN - OPUS4-12637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Obeid, R. A1 - Maltseva, Elena A1 - Thünemann, Andreas A1 - Tanaka, F. A1 - Winnik, F. M. T1 - Temperature response of self-assembled micelles of telechelic hydrophobically modified Poly(2-alkyl-2-oxazoline)s in water N2 - Hydrophobically end-modified (HM) poly(2-ethyl-2-oxazolines) (PEtOx) and poly(2-isopropyl-2-oxazolines) (PiPrOx) bearing an n-octadecyl chain on both termini or on one chain end only were prepared by cationic ring-opening polymerization of 2-ethyl-2-oxazoline and 2-isopropyl-2-oxazoline, respectively, and subsequent end-group modification. The polymers had a molar mass (Mn) ranging from 7000 to 13000 g mol-1, a size distribution Mw/Mn < 1.20, and end-group functionality > 0.97. All polymers, except the semitelechelic sample C18-PiPrOx-OH 13K (Mn = 13000 g mol-1), formed core-shell micelles in cold water with a hydrodynamic radius (RH), measured by dynamic light scattering, between 7 and 12 nm and a core of radius (Rc), determined by analysis of small-angle X-ray scattering (SAXS) data, of ~1.3 nm. Aqueous solutions of all polymers underwent a heat-induced phase transition detected by an increase in solution turbidity at a temperature (Tcp, cloud point) ranging from 32 to 62 °C, depending on polymer structure and size. Temperature-dependent light scattering (LS) measurements and fluorescence depolarization studies with the probe diphenylhexatriene (DPH) revealed that extensive intermicellar bridging takes place in solutions heated in the vicinity of Tcp leading to large assemblies (RH ≥ 1 µm). Further heating caused these assemblies to shrink into objects with RH ~ 300-700 nm, depending on the size and structure of the polymer. The formation of H-bonds between water molecules and the main-chain amide nitrogen atoms imparts distinct features to the flower/star micelles formed by telechelic/semitelechelic PiPrOx and PEtOx, compared to the micelles formed by other hydrophobically end-modified water-soluble polymers, such as poly(ethylene oxide) or poly(N-isopropylacrylamide). PY - 2009 DO - https://doi.org/10.1021/ma802592f SN - 0024-9297 SN - 1520-5835 VL - 42 IS - 6 SP - 2204 EP - 2214 PB - American Chemical Society CY - Washington, DC AN - OPUS4-19115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Renz, F. A1 - Jung, S. A1 - Klein, M. A1 - Menzel, Michael A1 - Thünemann, Andreas T1 - Molecular switching complexes with iron and tin as central atom N2 - The precursor [FeIII(L)Cl] (LH1.5) and several reactive groups for surface anchoring, full surface shielding can be reached, which leads to reduced protein adsorption of albumin and fibrinogen. In addition, adherent thrombocytes were not activated. This could be clearly shown by immunostaining adherent proteins and analyzing the thrombocyte covered area. The presented work provides an important strategy for the development of application relevant hemocompatible 3D structured materials. KW - Nanotechnology KW - thrombocyte adhesion KW - biomedical applications PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-308196 DO - https://doi.org/10.1039/c4tb00184b SN - 2050-750X SN - 2050-7518 VL - 2 IS - 23 SP - 3626 EP - 3635 PB - Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-30819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lak, A. A1 - Thünemann, Andreas A1 - Schilling, M. A1 - Ludwig, F. T1 - Resolving particle size modality in bi-modal iron oxide nanoparticle suspensions N2 - Particle size modality in bi-modal iron oxide suspensions was resolved by exploiting complex ac-susceptibility (ACS), small angle X-ray scattering (SAXS) and photon cross-correlation spectroscopy. To explain dynamic magnetic response of bi-modal suspensions, the Debye model was expanded to a linear superposition form allowing for the contribution of both particle fractions. This modified and adopted model is able to resolve the bi-modal particle size distributions. The SAXS curves of mono- and bi-modal suspensions were fitted well using a Monte Carlo simulation scheme, allowing the detection of bi-modal particle size distributions with high precision. KW - Iron oxide nanoparticle KW - Bi-modal size distribution characterization KW - Complex ac-susceptibility KW - Small angle X-ray scattering KW - Modeling KW - Nanotechnology KW - SAXS KW - Nanoparticles PY - 2015 DO - https://doi.org/10.1016/j.jmmm.2014.08.050 SN - 0304-8853 VL - 380 SP - 140 EP - 143 PB - Elsevier CY - Amsterdam AN - OPUS4-32563 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löwa, N. A1 - Knappe, Patrick A1 - Wiekhorst, F. A1 - Eberbeck, D. A1 - Thünemann, Andreas A1 - Trahms, L. T1 - Hydrodynamic and magnetic fractionation of superparamagnetic nanoparticles for magnetic particle imaging N2 - Resovist® originally developed as a clinical liver contrast agent for Magnetic Resonance Imaging exhibits also an outstanding performance as a tracer in Magnetic Particle Imaging (MPI). In order to study the physical mechanism of the high MPI performance of Resovist®, we applied asymmetric flow field–flow fractionation (A4F) and static magnetic fractionation (SMF) to separate Resovist® into a set of fractions with defined size classes. As A4F based on an elution method separates MNP according to their hydrodynamic size, SMF fractionates a particle distribution by its magnetic moment. The obtained fractions of both separation techniques were then magnetically characterized by magnetorelaxometry measurements to extract the corresponding effective magnetic anisotropy and hydrodynamic size distribution parameters. Additionally, the MPI performance of each fraction was assessed using magnetic particle spectroscopy. With both separation techniques fractions (normalized to their iron amount) an MPI signal gain of a factor of two could be obtained, even though the distribution of effective anisotropy and hydrodynamic size were significantly different. Relating these findings to the results from magnetic characterization allows for a better understanding of the underlying mechanisms of MPI performance of Resovist®. This knowledge may help to improve the design of novel MPI tracers and development of separation methods. KW - Superparamagnetic nanoparticles KW - Asymmetric flow field–flow fractionation KW - Magnetic particle spectroscopy KW - Magnetorelaxometry KW - Magnetic separation KW - Magnetic particle imaging KW - Resovist® KW - Nanotechnology KW - SAXS KW - Nanoparticles PY - 2015 DO - https://doi.org/10.1016/j.jmmm.2014.08.057 SN - 0304-8853 VL - 380 SP - 266 EP - 270 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-32562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löwa, N. A1 - Knappe, Patrick A1 - Wiekhorst, F. A1 - Eberbeck, D. A1 - Thünemann, Andreas A1 - Trahms, L. T1 - How hydrodynamic fractionation influences MPI performance of resovist N2 - We studied the magnetic resonance imaging liver contrast agent Resovist by a variety of magnetic measurement techniques, in order to understand the physical mechanism of their high magnetic particle imaging (MPI) performance, wirh a focus on the size-dependent contributions of the MPI signal. To this end, we used asymmetric flow field-flow fractionation to separate Resovist into a set of fractions with defined hydrodynamic diameters. The individual fractions were magnetically characterized by static magnetization and magnetorelaxometry measurements to obtain the corresponding effective magnetic anisotropy and effective size distribution parameters. In addition, the MPI performance of each fraction was assessed by magnetic particle spectroscopy. We observed an MPI signal gain of about 100% with respect to their iron amount for the best fraction. Relating these finding to the results from magnetic characterization provides more insight into mechanisms of MPI performance of Resovist. This knowledge may help to improve the design of novel MPI tracers. KW - Nanotechnology KW - Nanoparticles KW - Asymmetric flow field-flow fractionation KW - Magnetic nanoparticles (MNP) KW - Magnetic particle imaging (MPI) KW - Magnetic particle spectroscopy KW - Magnetic separation KW - Magnetorelaxometry (MRX) KW - Resovist PY - 2015 DO - https://doi.org/10.1109/TMAG.2014.2326833 SN - 0018-9464 SN - 1941-0069 VL - 51 IS - 2 SP - 5300104-1 EP - 5300104-4 PB - Institute of Electrical and Electronics Engineers CY - New York, NY AN - OPUS4-33337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebig, F. A1 - Thünemann, Andreas A1 - Koetz, J. T1 - Ostwald Ripening Growth Mechanism of Gold Nanotriangles in Vesicular Template Phases N2 - The mechanism of nanotriangle formation in multivesicular vesicles (MMV) is investigated by using time-dependent SAXS measurements in combination with UV−vis spectroscopy, light, and transmission electron microscopy. In the first time period 6.5 nm sized spherical gold nanoparticles are formed inside of the vesicles, which build up soft nanoparticle aggregates. In situ SAXS experiments show a linear increase of the volume and molar mass of nanotriangles in the second time period. The volume growth rate of the triangles is 16.1 nm3/min, and the growth rate in the vertical direction is only 0.02 nm/min. Therefore, flat nanotriangles with a thickness of 7 nm and a diameter of 23 nm are formed. This process can be described by a diffusionlimited Ostwald ripening growth mechanism. TEM micrographs visualize soft coral-like structures with thin nanoplatelets at the periphery of the aggregates, which disaggregate in the third time period into nanotriangles and spherical particles. The 16 times faster growth of nanotriangles in the lateral than that in the vertical direction is related to the adsorption of symmetry breaking components, i.e., AOT and the polyampholyte PalPhBisCarb, on the {111} facets of the gold nanoplatelets in combination with confinement effects of the vesicular template phase. KW - Gold KW - Nanoparticle KW - Small-angle x-ray scattering KW - SAXS KW - Kinetics PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-379261 DO - https://doi.org/10.1021/acs.langmuir.6b02662 SN - 0743-7463 VL - 32 IS - 42 SP - 10928 EP - 10935 PB - American Chemical Society AN - OPUS4-37926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Kästner, Claudia A1 - Krause, B. A1 - Meyer, T. A1 - Burel, A. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Estreal-Lopis, I. A1 - Gauffre, F. A1 - Fessard, V. A1 - Meijer, J. A1 - Luch, A. A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Impact of an artificial digestion procedure on aluminum-containing nanomaterials N2 - Aluminum has gathered toxicological Attention based on relevant human exposure and its suspected hazardous potential. Nanoparticles from food supplements or Food contact materials may reach the human gastrointestinal tract. Here, we monitored the physicochemical fate of aluminum containing nanoparticles and aluminum ions when passaging an in vitro model of the human gastrointestinal tract. Smallangle X-ray scattering (SAXS), transmission electron microscopy (TEM), ion beam microscopy (IBM), secondary ion beam mass spectrometry (TOF-SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) in the singleparticle mode were employed to characterize two aluminumcontaining nanomaterials with different particle core materials (Al0, γAl2O3) and soluble AlCl3. Particle size and shape remained unchanged in saliva, whereas strong Agglomeration of both aluminum nanoparticle species was observed at low pH in gastric fluid together with an increased ion release. The levels of free aluminum ions decreased in intestinal fluid and the particles deagglomerated, thus liberating primary particles again. Dissolution of nanoparticles was limited and substantial changes of their shape and size were not detected. The amounts of particle-associated phosphorus, chlorine, potassium, and calcium increased in intestinal fluid, as compared to nanoparticles in standard dispersion. Interestingly, nanoparticles were found in the intestinal fluid after addition of ionic aluminum. We provide a comprehensive characterization of the fate of aluminum nanoparticles in simulated gastrointestinal fluids, demonstrating that orally ingested nanoparticles probably reach the intestinal epithelium. The balance between dissolution and de novo complex formation should be considered when evaluating nanotoxicological experiments. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle PY - 2017 DO - https://doi.org/10.1021/acs.langmuir.7b02729 SN - 1520-5827 SN - 0743-7463 VL - 33 IS - 40 SP - 10726 EP - 10735 PB - Americal Chemical Society AN - OPUS4-42438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebig, F. A1 - Sarhan, R. M. A1 - Prietzel, C. A1 - Thünemann, Andreas A1 - Bargheer, M. A1 - Koetz, J. T1 - Undulated Gold Nanoplatelet Superstructures: In Situ Growth of Hemispherical Gold Nanoparticles onto the Surface of Gold Nanotriangles N2 - Negatively charged flat gold nanotriangles, formed in a vesicular template phase and separated by an AOT-micelle-based depletion flocculation, were reloaded by adding a cationic polyelectrolyte, that is, a hyperbranched polyethylenimine (PEI). Heating the system to 100 °C in the presence of a gold chloride solution, the reduction process leads to the formation of gold nanoparticles inside the polymer shell surrounding the nanoplatelets. The gold nanoparticle formation is investigated by UV−vis spectroscopy, small-angle X-ray scattering, and dynamic light scattering measurements in combination with transmission electron microscopy. Spontaneously formed gold clusters in the hyperbranched PEI shell with an absorption maximum at 350 nm grow on the surface of the nanotriangles as hemispherical particles with diameters of ∼6 nm. High-resolution micrographs show that the hemispherical gold particles are crystallized onto the {111} facets on the bottom and top of the platelet as well as on the edges without a grain boundary. Undulated gold nanoplatelet superstructures with special properties become available, which show a significantly modified performance in SERS-detected photocatalysis regarding both reactivity and enhancement factor. KW - Small-angle X-ray scattering KW - SAXS KW - gold KW - nanoparticle PY - 2018 DO - https://doi.org/10.1021/acs.langmuir.7b02898 SN - 0743-7463 VL - 34 IS - 15 SP - 4584 EP - 4594 PB - American Chemical Society AN - OPUS4-44704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, B. A1 - Meyer, T. A1 - Sieg, H. A1 - Kästner, Claudia A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Estrela-Lopis, I. A1 - Burel, A. A1 - Chevance, S. A1 - Gauffre, F. A1 - Jalili, P. A1 - Meijer, J. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Fessard, V. A1 - Laux, P. A1 - Lampen, A. A1 - Luch, A. T1 - Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis N2 - The application of appropriate analytical techniques is essential for nanomaterial (NM) characterization. In this study, we compared different analytical techniques for NM analysis. Regarding possible adverse health effects, ionic and particulate NM effects have to be taken into account. As NMs behave quite differently in physiological media, special attention was paid to techniques which are able to determine the biosolubility and complexation behavior of NMs. Representative NMs of similar size were selected: aluminum (Al0) and aluminum oxide (Al2O3), to compare the behavior of metal and metal oxides. In addition, titanium dioxide (TiO2) was investigated. Characterization techniques such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were evaluated with respect to their suitability for fast characterization of nanoparticle dispersions regarding a particle's hydrodynamic diameter and size distribution. By application of inductively coupled plasma mass spectrometry in the single particle mode (SP-ICP-MS), individual nanoparticles were quantified and characterized regarding their size. SP-ICP-MS measurements were correlated with the information gained using other characterization techniques, i.e. transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The particle surface as an important descriptor of NMs was analyzed by X-ray diffraction (XRD). NM impurities and their co-localization with biomolecules were determined by ion beam microscopy (IBM) and confocal Raman microscopy (CRM). We conclude advantages and disadvantages of the different techniques applied and suggest options for their complementation. Thus, this paper may serve as a practical guide to particle characterization techniques. KW - Small-angle X-ray scattering KW - SAXS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447057 DO - https://doi.org/10.1039/C8RA00205C SN - 2046-2069 VL - 8 IS - 26 SP - 14377 EP - 14388 PB - The Royal Society of Chemistry AN - OPUS4-44705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Braeuning, C. A1 - Kunz, B. M. A1 - Daher, H. A1 - Kästner, C. A1 - Krause, B.-C. A1 - Meyer, T. A1 - Jalili, P. A1 - Kogeveen, K. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Burel, A. A1 - Chevance, S. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Gauffre, F. A1 - Fessard, V. A1 - Meijer, J. A1 - Estrela-Lopis, I. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Uptake and molecular impact of aluminum-containing nanomaterials on human intestinal caco-2 cells N2 - Aluminum (Al) is one of the most common elements in the earth crust and increasingly used in food, consumer products and packaging. Its hazard potential for humans is still not completely understood. Besides the metallic form, Al also exists as mineral, including the insoluble oxide, and in soluble ionic forms. Representatives of these three species, namely a metallic and an oxidic species of Al-containing nanoparticles and soluble aluminum chloride, were applied to human intestinal cell lines as models for the intestinal barrier. We characterized physicochemical particle parameters, protein corona composition, ion release and cellular uptake. Different in vitro assays were performed to determine potential effects and molecular modes of Action related to the individual chemical species. For a deeper insight into signaling processes, microarray transcriptome analyses followed by bioinformatic data analysis were employed. The particulate Al species showed different solubility in biological media. Metallic Al nanoparticles released more ions than Al2O3 nanoparticles, while AlCl3 showed a mixture of dissolved and agglomerated particulate entities in biological media. The protein corona composition differed between both nanoparticle species. Cellular uptake, investigated in transwell experiments, occurred predominantly in particulate form, whereas ionic Al was not taken up by intestinal cell lines. Transcellular transport was not observed. None of the Al species showed cytotoxic effects up to 200 mg Al/mL. The transcriptome analysis indicated mainly effects on oxidative stress pathways, xenobiotic metabolism and metal homeostasis. We have shown for the first time that intestinal cellular uptake of Al occurs preferably in the particle form, while toxicological effects appear to be ion-related. KW - Small-angle x-ray scattering KW - SAXS KW - Nanopatricle PY - 2018 DO - https://doi.org/10.1080/17435390.2018.1504999 SN - 1743-5390 VL - 12 IS - 9 SP - 992 EP - 1013 PB - Taylor & Francis AN - OPUS4-47432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brandl, F. A1 - Thünemann, Andreas A1 - Beuermann, S. T1 - Poly(meth)acrylate-PVDF core–shell particles from emulsion polymerization: preferential formation of the PVDF β crystal phase N2 - A facile and convenient approach for the synthesis of core–shell particles via emulsion polymerization is presented. The shell consists of poly(vinylidene fluoride) (PVDF) and the core of poly(methyl methacrylate) (PMMA), poly(glycidyl methacrylate) (PGMA) or poly(methyl acrylate) (PMA). In a first step, a non-fluorinated (meth)acrylate monomer is polymerized in the emulsion to produce poly(meth)acrylate core particles. Secondly, vinylidene fluoride (VDF) is directly added to the reactor and polymerized for shell formation. Small-angle X-ray scattering (SAXS) was employed to characterize the structure of the core–shell particles. Interestingly, the particles’ core contains fluorinated and non-fluorinated polymers, whereas the shell of the particles consists only of PVDF. The resulting particles with a diameter of around 40 nm show a significantly higher PVDF β phase content than the PVDF homopolymer obtained by emulsion polymerization KW - Small-angle x-ray scattering KW - SAXS KW - Nanopatricle KW - Polymer PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465910 DO - https://doi.org/10.1039/C8PY01236A SN - 1759-9954 SN - 1759-9962 VL - 9 IS - 44 SP - 5359 EP - 5369 PB - The Royal Society of Chemistry AN - OPUS4-46591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebig, F. A1 - Sarhan, R. M. A1 - Schmitt, C. N. Z. A1 - Thünemann, Andreas A1 - Prietzel, C. A1 - Bargheer, M. A1 - Koetz, J. T1 - Gold Nanotriangles with Crumble Topping and their Influence on Catalysis and Surface‐Enhanced Raman Spectroscopy N2 - By adding hyaluronic acid (HA) to dioctyl sodium sulfosuccinate (AOT)‐stabilized gold nanotriangles (AuNTs) with an average thickness of 7.5±1 nm and an edge length of about 175±17 nm, the AOT bilayer is replaced by a polymeric HA‐layer leading to biocompatible nanoplatelets. The subsequent reduction process of tetrachloroauric acid in the HA‐shell surrounding the AuNTs leads to the formation of spherical gold nanoparticles on the platelet surface. With increasing tetrachloroauric acid concentration, the decoration with gold nanoparticles can be tuned. SAXS measurements reveal an increase of the platelet thickness up to around 14.5 nm, twice the initial value of bare AuNTs. HRTEM micrographs show welding phenomena between densely packed particles on the platelet surface, leading to a crumble formation while preserving the original crystal structure. Crumbles crystallized on top of the platelets enhance the Raman signal by a factor of around 20, and intensify the plasmon‐driven dimerization of 4‐nitrothiophenol (4‐NTP) to 4,4′‐dimercaptoazobenzene in a yield of up to 50 %. The resulting crumbled nanotriangles, with a biopolymer shell and the absorption maximum in the second window for in vivo imaging, are promising candidates for biomedical sensing. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle KW - Gold PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503977 DO - https://doi.org/10.1002/cplu.201900745 VL - 85 IS - 3 SP - 519 EP - 526 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-50397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chowdhary, S. A1 - Schmidt, R. F. A1 - Sahoo, A. K. A1 - tom Dieck, T. A1 - Hohmann, T. A1 - Schade, B. A1 - Brademann-Jock, Kerstin A1 - Thünemann, Andreas A1 - Netz, R. R. A1 - Gradzielski, M. A1 - Koksch, B. T1 - Rational design of amphiphilic fluorinated peptides: evaluation of self-assembly properties and hydrogel formation N2 - Advanced peptide-based nanomaterials composed of self-assembling peptides (SAPs) are of emerging interest in pharmaceutical and biomedical applications. The introduction of fluorine into peptides, in fact, offers unique opportunities to tune their biophysical properties and intermolecular interactions. In particular, the degree of fluorination plays a crucial role in peptide engineering as it can be used to control the characteristics of fluorine-specific interactions and, thus, peptide conformation and self-assembly. Here, we designed and explored a series of amphipathic peptides by incorporating the fluorinated amino acids (2S)-4-monofluoroethylglycine (MfeGly), (2S)-4,4-difluoroethylglycine (DfeGly) and (2S)-4,4,4-trifluoroethylglycine (TfeGly) as hydrophobic components. This approach enabled studying the impact of fluorination on secondary structure formation and peptide self-assembly on a systematic basis. We show that the interplay between polarity and hydrophobicity, both induced differentially by varying degrees of side chain fluorination, does affect peptide folding significantly. A greater degree of fluorination promotes peptide fibrillation and subsequent formation of physical hydrogels in physiological conditions. Molecular simulations revealed the key role played by electrostatically driven intra-chain and inter-chain contact pairs that are modulated by side chain fluorination and give insights into the different self-organization behaviour of selected peptides. Our study provides a systematic report about the distinct features of fluorinated oligomeric peptides with potential applications as peptide-based biomaterials. KW - Small-angle X-ray scattering KW - SAXS KW - Amyloid PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553504 DO - https://doi.org/10.1039/D2NR01648F SN - 2040-3364 VL - 14 IS - 28 SP - 10176 EP - 10189 PB - Royal Society of Chemistry AN - OPUS4-55350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Annadurai, V. A1 - Balazs, D. M. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Del Giudice, A. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Garcia, P. R. A. F. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, M. A1 - Hollamby, M. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, Patrick E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Spiering, G. A. A1 - Stawski, Tomasz M. A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor - Results of a small-angle scattering data analysis round robin N2 - A round-robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5% and half of the population width entries within 40%. Due to the added complexity of the structure factor, far fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 and 86%, respectively. This round-robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round Robin KW - Data analysis KW - Small-angle scattering KW - Nanomaterials KW - Interlaboratory comparability KW - Nanostructure quantification KW - Methodology KW - MOUSE PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-587091 DO - https://doi.org/10.1107/S1600576723008324 SN - 1600-5767 VL - 56 IS - 6 SP - 1618 EP - 1629 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-58709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -