TY - JOUR A1 - Sieg, H. A1 - Braeuning, C. A1 - Kunz, B. M. A1 - Daher, H. A1 - Kästner, C. A1 - Krause, B.-C. A1 - Meyer, T. A1 - Jalili, P. A1 - Kogeveen, K. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Burel, A. A1 - Chevance, S. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Gauffre, F. A1 - Fessard, V. A1 - Meijer, J. A1 - Estrela-Lopis, I. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Uptake and molecular impact of aluminum-containing nanomaterials on human intestinal caco-2 cells JF - Nanotoxicology N2 - Aluminum (Al) is one of the most common elements in the earth crust and increasingly used in food, consumer products and packaging. Its hazard potential for humans is still not completely understood. Besides the metallic form, Al also exists as mineral, including the insoluble oxide, and in soluble ionic forms. Representatives of these three species, namely a metallic and an oxidic species of Al-containing nanoparticles and soluble aluminum chloride, were applied to human intestinal cell lines as models for the intestinal barrier. We characterized physicochemical particle parameters, protein corona composition, ion release and cellular uptake. Different in vitro assays were performed to determine potential effects and molecular modes of Action related to the individual chemical species. For a deeper insight into signaling processes, microarray transcriptome analyses followed by bioinformatic data analysis were employed. The particulate Al species showed different solubility in biological media. Metallic Al nanoparticles released more ions than Al2O3 nanoparticles, while AlCl3 showed a mixture of dissolved and agglomerated particulate entities in biological media. The protein corona composition differed between both nanoparticle species. Cellular uptake, investigated in transwell experiments, occurred predominantly in particulate form, whereas ionic Al was not taken up by intestinal cell lines. Transcellular transport was not observed. None of the Al species showed cytotoxic effects up to 200 mg Al/mL. The transcriptome analysis indicated mainly effects on oxidative stress pathways, xenobiotic metabolism and metal homeostasis. We have shown for the first time that intestinal cellular uptake of Al occurs preferably in the particle form, while toxicological effects appear to be ion-related. KW - Small-angle x-ray scattering KW - SAXS KW - Nanopatricle PY - 2018 DO - https://doi.org/10.1080/17435390.2018.1504999 SN - 1743-5390 VL - 12 IS - 9 SP - 992 EP - 1013 PB - Taylor & Francis AN - OPUS4-47432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brandl, F. A1 - Thünemann, Andreas A1 - Beuermann, S. T1 - Poly(meth)acrylate-PVDF core–shell particles from emulsion polymerization: preferential formation of the PVDF β crystal phase JF - Polymer Chemistry N2 - A facile and convenient approach for the synthesis of core–shell particles via emulsion polymerization is presented. The shell consists of poly(vinylidene fluoride) (PVDF) and the core of poly(methyl methacrylate) (PMMA), poly(glycidyl methacrylate) (PGMA) or poly(methyl acrylate) (PMA). In a first step, a non-fluorinated (meth)acrylate monomer is polymerized in the emulsion to produce poly(meth)acrylate core particles. Secondly, vinylidene fluoride (VDF) is directly added to the reactor and polymerized for shell formation. Small-angle X-ray scattering (SAXS) was employed to characterize the structure of the core–shell particles. Interestingly, the particles’ core contains fluorinated and non-fluorinated polymers, whereas the shell of the particles consists only of PVDF. The resulting particles with a diameter of around 40 nm show a significantly higher PVDF β phase content than the PVDF homopolymer obtained by emulsion polymerization KW - Small-angle x-ray scattering KW - SAXS KW - Nanopatricle KW - Polymer PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465910 DO - https://doi.org/10.1039/C8PY01236A SN - 1759-9954 SN - 1759-9962 VL - 9 IS - 44 SP - 5359 EP - 5369 PB - The Royal Society of Chemistry AN - OPUS4-46591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -