TY - JOUR A1 - Obeid, R. A1 - Maltseva, Elena A1 - Thünemann, Andreas A1 - Tanaka, F. A1 - Winnik, F. M. T1 - Temperature response of self-assembled micelles of telechelic hydrophobically modified Poly(2-alkyl-2-oxazoline)s in water N2 - Hydrophobically end-modified (HM) poly(2-ethyl-2-oxazolines) (PEtOx) and poly(2-isopropyl-2-oxazolines) (PiPrOx) bearing an n-octadecyl chain on both termini or on one chain end only were prepared by cationic ring-opening polymerization of 2-ethyl-2-oxazoline and 2-isopropyl-2-oxazoline, respectively, and subsequent end-group modification. The polymers had a molar mass (Mn) ranging from 7000 to 13000 g mol-1, a size distribution Mw/Mn < 1.20, and end-group functionality > 0.97. All polymers, except the semitelechelic sample C18-PiPrOx-OH 13K (Mn = 13000 g mol-1), formed core-shell micelles in cold water with a hydrodynamic radius (RH), measured by dynamic light scattering, between 7 and 12 nm and a core of radius (Rc), determined by analysis of small-angle X-ray scattering (SAXS) data, of ~1.3 nm. Aqueous solutions of all polymers underwent a heat-induced phase transition detected by an increase in solution turbidity at a temperature (Tcp, cloud point) ranging from 32 to 62 °C, depending on polymer structure and size. Temperature-dependent light scattering (LS) measurements and fluorescence depolarization studies with the probe diphenylhexatriene (DPH) revealed that extensive intermicellar bridging takes place in solutions heated in the vicinity of Tcp leading to large assemblies (RH ≥ 1 µm). Further heating caused these assemblies to shrink into objects with RH ~ 300-700 nm, depending on the size and structure of the polymer. The formation of H-bonds between water molecules and the main-chain amide nitrogen atoms imparts distinct features to the flower/star micelles formed by telechelic/semitelechelic PiPrOx and PEtOx, compared to the micelles formed by other hydrophobically end-modified water-soluble polymers, such as poly(ethylene oxide) or poly(N-isopropylacrylamide). PY - 2009 DO - https://doi.org/10.1021/ma802592f SN - 0024-9297 SN - 1520-5835 VL - 42 IS - 6 SP - 2204 EP - 2214 PB - American Chemical Society CY - Washington, DC AN - OPUS4-19115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -