TY - JOUR A1 - Thamm, T. A1 - Wett, D. A1 - Bohne, W. A1 - Strub, Erik A1 - Röhrich, J. A1 - Szargan, R. A1 - Marx, G. A1 - Goedel, W.A. T1 - Investigations on PECVD boron carbonitride layers by means of ERDA, XPS and nano-indentation measurements JF - Microchimica acta N2 - The deposition of boron carbonitride layers on silicon substrates by a microwave plasma enhanced chemical vapour deposition (MW-PECVD) process using N-trimethylborazine (TMB) and benzene as precursors is presented. As plasma gases argon and nitrogen were used. In this investigation we focus on the influence of the gas composition, substrate temperature and -bias on the layer composition, layer structure as well as the thermal stability. The films were analyzed with respect to their composition and bonding structure using elastic recoil detection analysis (ERDA) and X-ray photoelectron spectroscopy (XPS). Furthermore, nanoindentation measurements before and after annealing tests at 500 and 700°C were performed. The measurements show a strong dependence of the structure and mechanical properties on the substrate temperature. The hydrogen content strongly decreases to 8 at.% with higher substrate temperatures. Simultaneously, the layer hardness and Young’s modulus increase up to 21 and 173 GPa, respectively. The hardness does not decrease after annealing for 1 hour at 700°C. KW - BCN KW - PECVD KW - XPS KW - ERDA KW - Hardness KW - Annealing tests PY - 2006 DO - https://doi.org/10.1007/s00604-006-0702-y SN - 0026-3672 SN - 1436-5073 VL - 156 IS - 1-2 SP - 53 EP - 56 PB - Springer CY - Wien AN - OPUS4-14268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Singh, Chandan A1 - Thiele, M. A1 - Dathe, A. A1 - Thamm, S. A1 - Henkel, T. A1 - Sumana, G. A1 - Fritzsche, W. A1 - Czáki, A. ED - Singh, Chandan T1 - Tri-sodium citrate stabilized gold nanocubes for plasmonic glucose sensing JF - Materials letters N2 - We report a two-step process for the immobilization of gold nanocubes (Au-NCs) on a glass surface using a combination of extraction and exchange reaction using poly (sodium 4-styrenesulfonate) (PSS) and trisodium citrate (TSC). Cetyltrimethylammonium chloride (CTAC) stabilized gold nanocubes (CTAC/Au-NCs) synthesized by a microfluidic synthesis procedure were successfully deposited on silane-modified glass substrate after extraction of excess CTAC using chloroform followed by exchange of CTAC to TSC on the surface of Au-NCs. Further, TSC/Au-NCs were found to be highly stable and suitable for microfluidic sensing of different glucose concentrations using localized surface plasmon resonance (LSPR) spectroscopy offering an improved sensitivity (126.37 nm/RIU). KW - Gold nanocubes KW - Surfactant KW - Immobilization PY - 2021 DO - https://doi.org/10.1016/j.matlet.2021.130655 SN - 0167-577X SN - 1873-4979 VL - 304 SP - 1 EP - 4 PB - Elsevier CY - New York, NY AN - OPUS4-53216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -