TY - JOUR A1 - Lu, Z. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM I 42.5 R used for Priority Program DFG SPP 2005 “Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials” N2 - A thorough characterization of starting materials is the precondition for further research, especially for cement, which contains various phases and presents quite a complex material for fundamental scientific investigation. In the paper at hand, the characterization data of the reference cement CEM I 42.5 R used within the priority program 2005 of the German Research Foundation (DFG SPP 2005) are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The data were collected based on tests conducted by nine research groups involved in this cooperative program. For all data received, the mean values and the corresponding errors were calculated. The results shall be used for the ongoing research within the priority program. KW - Portland cement KW - Characterization KW - DFG SPP 2005 PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-500849 DO - https://doi.org/10.1016/j.dib.2019.104699 SN - 2352-3409 VL - 27 SP - 104699 PB - Elsevier Inc. AN - OPUS4-50084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, H. J. A1 - Bucheli, T. D. A1 - Dieguez-Alonso, A. A1 - Fabbri, D. A1 - Knicker, H. A1 - Schmidt, H.-P. A1 - Ulbricht, A. A1 - Becker, Roland A1 - Buscaroli, A. A1 - Buerge, D. A1 - Cross, A. A1 - Dickinson, D. A1 - Enders, A. A1 - Esteves, V.I. A1 - Evangelou, M. W. H. A1 - Fellet, G. A1 - Friedrich, K. A1 - Gasco Guerrero, G. A1 - Glaser, B. A1 - Hanke, U. M. A1 - Hanley, K. A1 - Hilber, I. A1 - Kalderis, D. A1 - Leifeld, J. A1 - Masek, O. A1 - Mumme, J. A1 - Paneque Carmona, M. A1 - Calvelo Pereira, R. A1 - Rees, F. A1 - Rombola, A. G. A1 - de la Rosa, J. M. A1 - Sakrabani, R. A1 - Sohi, S. A1 - Soja, G. A1 - Valagussa, M. A1 - Verheijen, F. A1 - Zehetner, F. T1 - Towards the standardization of biochar analysis: the COST action TD1107 interlaboratory comparison N2 - Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical–chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future. KW - Biochar KW - Analysis KW - Standardization KW - Ring test KW - Interlaboratory comparison PY - 2016 DO - https://doi.org/10.1021/acs.jafc.5b05055 SN - 0021-8561 SN - 1520-5118 VL - 64 IS - 2 SP - 513 EP - 527 PB - American Chemical Society CY - Columbus, Ohio AN - OPUS4-35289 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiedeitz, M. A1 - Schmidt, Wolfram A1 - Härder, M. A1 - Kränkel, T. T1 - Performance of rice husk ash as supplementary cementitious material after production in the field and in the lab N2 - Supplementary cementitious materials (SCM) can reduce the total amount of Portland cement clinker in concrete production. Rice husk ashes (RHA) can be converted from an agricultural by-product to a high-performance concrete constituent due to a high amount of reactive silica with pozzolanic properties if they are burnt under controlled conditions. The way and duration of combustion, the cooling process as well as the temperature have an effect on the silica form and thus, the chemical and physical performance of the RHA. Various studies on the best combustion technique have been published to investigate the ideal combustion techniques. Yet, the process mostly took place under laboratory conditions. Investigating the difference between the performance of RHA produced in a rural environment and laboratory conditions is useful for the assessment and future enhancement of RHA production, and its application both as building material, for example in rural areas where it is sourced in large quantities, and as additive for high performance concrete. Thus, the paper presents a comparison between RHA produced under rudimentary conditions in a self-made furnace in the rural Bagamoyo, Tanzania and under controlled laboratory conditions at the Technical University of Munich, Germany, with different combustion methods and temperatures. In a second step, RHA was ground to reach particle size distributions comparable to cement. In a third step, cement pastes were prepared with 10%, 20% and 40% of cement replacement, and compared to the performance of plain and fly ash blended cement pastes. The results show that controlled burning conditions around 650 °C lead to high reactivity of silica and, therefore, to good performance as SCM. However, also the RHA burnt under less controlled conditions in the field provided reasonably good properties, if the process took place with proper burning parameters and adequate grinding. The knowledge can be implemented in the field to improve the final RHA performance as SCM in concrete. KW - Rice husk ash KW - Agricultural by-product KW - Supplementary cementitious material KW - Waste management KW - Carbon dioxide emissions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568953 DO - https://doi.org/10.3390/ma13194319 SN - 1996-1944 VL - 13 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-56895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Z. C. A1 - Haist, M. A1 - Ivanov, D. A1 - Jakob, C. A1 - Jansen, D. A1 - Schmid, M. A1 - Kißling, P. A. A1 - Leinitz, Sarah A1 - Link, J. A1 - Mechtcherine, V. A1 - Neubauer, J. A1 - Plank, J. A1 - Schmidt, Wolfram A1 - Schilde, C. A1 - Schröfl, C. A1 - Sowoidnich, T. A1 - Stephan, D. T1 - Characterization data of reference cement CEM III/A 42.5N used for priority program DFG SPP 2005 "Opus Fluidum Futurum - Rheology of reactive, multiscale, multiphase construction materials" N2 - Two types of cements were selected as the reference cement in the priority program 2005 of the German Research Foundation (DFG SPP 2005). A thorough characterization of CEM I 42.5 R has been made in a recent publication. In this paper, the characterization data of the other reference cement CEM III/A 42.5 N are presented from the aspects of chemical and mineralogical compositions as well as physical and chemical properties. The characterization data of the slag, which is the second main constituent of this specific cement besides the clinker, are presented independently. For all data received, the mean values and the corresponding errors were calculated. The data shall be used for the ongoing research within the priority program. Also, researchers from outside this priority program can benefit from these data if the same materials are used. KW - Cement KW - Slag KW - Characterization KW - DFG SPP 2005 PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568980 DO - https://doi.org/10.1016/j.dib.2020.105524 SN - 2352-3409 VL - 30 SP - 1 EP - 14 PB - Elsevier CY - Amsterdam AN - OPUS4-56898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juds, Carmen A1 - Schmidt, J. A1 - Weller, Michael G. A1 - Lange, Thorid A1 - Beck, Uwe A1 - Conrad, T. A1 - Boerner, H. G. T1 - Combining phage display and next-generation sequencing for materials sciences: A case study on probing polypropylene surfaces N2 - Phage display biopanning with Illumina next-generation sequencing (NGS) is applied to reveal insights into peptide-based adhesion domains for polypropylene (PP). One biopanning round followed by NGS selects robust PP-binding peptides that are not evident by Sanger sequencing. NGS provides a significant statistical base that enables motif analysis, statistics on positional residue depletion/enrichment, and data analysis to suppress false-positive sequences from amplification bias. The selected sequences are employed as water-based primers for PP-metal adhesion to condition PP surfaces and increase adhesive strength by 100% relative to nonprimed PP. KW - Polymers KW - Polypropylene KW - Glue KW - Plastics KW - Surface Activation KW - Primer KW - Peptide Library KW - Epoxy KW - Solid-binding Peptides KW - Functionalization KW - Polymer-binding Peptides KW - Adhesion KW - Material-binding Peptides KW - Adhesives PY - 2020 DO - https://doi.org/10.1021/jacs.0c03482 SN - 0002-7863 SN - 1520-5126 VL - 142 IS - 24 SP - 10624 EP - 10628 PB - ACS CY - Washington, DC, USA AN - OPUS4-51123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram A1 - Uzoegbo, H.C. A1 - Bella, N. A1 - Rongai, G. A1 - Kühne, Hans-Carsten A1 - Diergardt, T. ED - Diouri, A. ED - Khachani, N. ED - Alami Talbi, M. ED - Ait Brahim, L. ED - Bahi, L. T1 - Cement testing in Africa - Conclusions from the first africa-wide proficiency testing scheme N2 - African cement inffastructure is quite complex. Apart from Northern Africa and South Africa in particular, cement plants are scarce resulting in highly unstable cement pricing. Clinker and cement are imported from overseas, e.g. from Portugal, Turkey, Pakistan, Indonesia, and China. Imports are typically determined by the lowest price, and as a result the countries of origin of products vaiy regularly yielding large scatter of properties. Quality control and a good quality infrastructure are thus of utmost importance for the safety of the popuiace, an issue, which is actually often neglected. With funding of the German Metrology Institute (PTB) and Support of the SPIN project, a proficiency testing scheme for cement testing according to EN 196 was set up for African laboratories. Proficiency testing schemes, also called round robins. are interlaboratory performance comparisons allowing participants to evaluate themselves against pre-established criteria. Thev are a powerful tool to help laboratories improve their performance as well as demonstrate their competences to accreditation bodies or Customers. 26 laboratories from 20 nations, 18 of which from Africa, participated. The BAM Federal Institute for Materials Research and Testing acted as coordinator and provider of the scheme. The aim of the round robin was to interpret the submitted data further beyond the pure statistic analyses. The data provided a positive picture of the performance of the participants in general, but it also exhibited a number of technical fields that need improvement. The paper provides the general results of the scheme and analyses identified strengths and weak points based on the submitted and non submitted data as well as on discrepancies from the EN 196 procedures during measurements. The application of EN Standards for material testing is critically discussed and since quality infrastructure is also always an issue between industrial and political stakeholders, suggestions for the mitigation of the identified shared problems are given. T2 - CMSS 2013 - International congress on materials & structural stability - Building up sustainable materials & constructions CY - Rabat, Morocco DA - 27.11.2013 KW - Viscosity modifying agent KW - Metakaolin KW - Diutan gum KW - Welan gum KW - Rheology PY - 2013 SN - 978-9954-32-689-3 SP - 1 EP - 5 AN - OPUS4-30042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Wolfram A1 - Uzoegbo, H.C. A1 - Bella, N. A1 - Rongai, G. A1 - Kühne, Hans-Carsten A1 - Diergardt, T. T1 - Cement testing in Africa - Conclusions from the first africa-wide proficiency testing scheme N2 - African cement infrastructure is quite complex. Apart from Northern Africa and South Africa in particular, cement plants are scarce resulting in highly unstable cement pricing. Clinker and cement are imported from overseas, e.g. from Portugal, Turkey, Pakistan, Indonesia, and China. Imports are typically determined by the lowest price, and as a result the countries of origin of products vary regularly yielding large scatter of properties. Quality control and a good quality infrastructure are thus of utmost importance for the safety of the populace, an issue, which is actually often neglected. With funding of the German Metrology Institute (PTB) and support of the SPIN project, a proficiency testing scheme for cement testing according to EN 196 was set up for African laboratories. Proficiency testing schemes, also called round robins, are inter-laboratory performance comparisons allowing participants to evaluate themselves against pre-established criteria. They are a powerful tool to help laboratories improve their performance as well as demonstrate their competences to accreditation bodies or customers. 26 laboratories from 20 nations, 18 of which from Africa, participated. The BAM Federal Institute for Materials Research and Testing acted as coordinator and provider of the scheme. The aim of the round robin was to interpret the submitted data further beyond the pure statistic analyses. The data provided a positive picture of the performance of the participants in general, but it also exhibited a number of technical fields that need improvement. The paper provides the general results of the scheme and analyses identified strengths and weak points based on the submitted and non submitted data as well as on discrepancies from the EN 196 procedures during measurements. The application of EN standards for material testing is critically discussed and since quality infrastructure is also always an issue between industrial and political stakeholders, suggestions for the mitigation of the identified shared problems are given. KW - Round robin KW - Quality control KW - Cement testing KW - Proficiency testing PY - 2013 SN - 2225-0514 SN - 2224-5790 VL - 4 SP - 54 EP - 58 PB - International Institute for Conservation of Historic and Artistic Works CY - New York, NY, USA AN - OPUS4-29933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, M. A1 - Bettge, Dirk A1 - Hilgenberg, Kai A1 - Binder, M. A1 - Dollmeier, K. A1 - Dreyer, M. A1 - Klöden, B. A1 - Schlingmann, T. A1 - Schmidt, J. T1 - Reproducibility and Scattering in Additive Manufacturing: Results from a Round Robin on PBF-LB/M AlSi10Mg Alloy T1 - Reproduzierbarkeit und Streuung bei der additiven Fertigung: Ergebnisse eines Ringversuchs mit einer PBF-LB/M AlSi10Mg-Legierung N2 - The round robin test investigated the reliability users can expect for AlSi10Mg additive manufactured specimens by laser powder bed fusion through examining powder quality, process parameter, microstructure defects, strength and fatigue. Besides for one outlier, expected static material properties could be found. Optical microstructure inspection was beneficial to determine true porosity and porosity types to explain the occurring scatter in properties. Fractographic analyses reveal that the fatigue crack propagation starts at the rough as-built surface for all specimens. Statistical analysis of the scatter in fatigue using statistical derived safety factors concludes that at a stress of 36.87 MPa the fatigue limit of 107 cycles could be reached for all specimen with a survival probability of 99.999 %. N2 - Im Rahmen eines Ringversuchs wurde durch die Untersuchung der Pulverqualität, der Prozessparameter, der Gefügefehler, der Festigkeit und der Ermüdung die Zuverlässigkeit bestimmt, die Nutzer von AlSi10Mg-Proben erwarten können, die mit pulverbettbasiertes Schmelzen mittels Laser (engl. Laser Powder Bed Fusion) gefertigt worden sind. Abgesehen von einem Ausreißer wurden die erwarteten statischen Materialeigenschaften erreicht. Eine optische Gefügeprüfung diente dazu, die tatsächliche Porosität und Arten von Porosität zu ermitteln, um die bei den Eigenschaften auftretende Streuung zu erklären. Fraktographische Unterschungen zeigen eine bei allen Proben von der rauen Oberfläche im As-built-Zustand ausgehende Ermüdungsrissausbreitung. Aus der statistischen Analyse der Streuung bezüglich der Ermüdung unter Anwendung von statistischen abgeleiteten Sicherheitsfaktoren geht hervor, dass alle Proben die Dauerfestigkeit von 107 Zyklen bei einer Spannung von 36,87 MPa mit einer Überlebenswahrscheinlichkeit von 99,999 % erreichten. KW - Additive manufacturing KW - Reproducibility KW - Reliability PY - 2022 DO - https://doi.org/10.1515/pm-2022-1018 SN - 2195-8599 VL - 59 IS - 10 SP - 580 EP - 614 PB - De Gruyter AN - OPUS4-55935 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, M. A1 - Schlingmann, T. A1 - Schmidt, J. A1 - Bettge, Dirk A1 - Hilgenberg, Kai A1 - Binder, M. A1 - Klöden, B. T1 - A Round Robin Test To Investigate The Printing Quality Of PBF-LB/M Processed AlSi10Mg N2 - When it comes to higher accuracies, new technologies and real applications in additive manufacturing, there is one topic which cannot be avoided: The material response on the chosen processing parameters and its agreement and correspondence with literature data of the wrought material grade counterpart. In industrial Additive Manufacturing (AM) standards in terms of printing parameters, protection gas atmospheres or powder handling instructions are not obligatory. Therefore, the question must be answered whether the AM process is reproducible and reliable over different printing companies. This was the motivation to realize a round robin test between 8 European printing companies and academic partners. The consortium had printed and tested fatigue and tensile testing bars under plant-specific conditions. A commonly used cast aluminum alloy, AlSi10Mg, was chosen as test material for the PBF-LB/M process. Differences of the results between the partners and the scatter itself were discussed in detail. T2 - World PM2022 CY - Lyon, France DA - 09.10.2022 KW - Additive manufacturing KW - Round robin KW - Reproducibility KW - Laser powder bed fusion KW - AlSi10Mg PY - 2022 SN - 978-1-899072-54-5 SP - 1 EP - 10 PB - European Powder Metallurgy Association (EPMA) AN - OPUS4-56304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schneider, M. A1 - Schlingmann, T. A1 - Schmidt, J. A1 - Bettge, Dirk A1 - Hilgenberg, Kai A1 - Binder, M. A1 - Klöden, B. T1 - A Round Robin Test To Investigate The Printing Quality Of PBF LB/M Processed AlSi10Mg N2 - When it comes to higher accuracies, new technologies and real applications in additive manufacturing, there is one topic which cannot be avoided: The material response on the chosen processing parameters and its agreement and correspondence with literature data of the wrought material grade counterpart. In industrial Additive Manufacturing (AM) standards in terms of printing parameters, protection gas atmospheres or powder handling instructions are not obligatory. Therefore, the question must be answered whether the AM process is reproducible and reliable over different printing companies. This was the motivation to realize a round robin test between 8 European printing companies and academic partners. The consortium had printed and tested fatigue and tensile testing bars under plant-specific conditions. A commonly used cast aluminum alloy, AlSi10Mg, was chosen as test material for the PBF-LB/M process. Differences of the results between the partners and the scatter itself were discussed in detail. T2 - World PM2022 CY - Lyon, France DA - 09.10.2022 KW - Additive manufacturing KW - AlSi10Mg KW - Laser powder bed fusion KW - Round robin KW - Reproducibility PY - 2022 AN - OPUS4-56303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Ballio, F. A1 - Chatzi, E. A1 - Cigada, A. A1 - Darò, P. A1 - Elfgren, L. A1 - Gentile, C. A1 - Górski, M. A1 - Küttenbaum, Stefan A1 - Limongelli, M. P. A1 - Mancini, G. A1 - Oliveira, S. A1 - Rasol, M. A1 - Schmidt, F. A1 - Shan, J. A1 - Sousa, H. A1 - Torrent, R. A1 - Ueda, T. A1 - Verstrynge, E. T1 - Chapter 6: Case studies N2 - This chapter contains a selection of case studies that show the implementation of the methods and tools that have been described in the previous chaprters of fib Bulletin 109 on actual large-scale structures. KW - Structural engineering KW - Structural Health Monitoring KW - Non-destructive testing KW - Static and dynamic reassessment KW - Existing structures PY - 2023 SN - 978-2-88394-172-4 DO - https://doi.org/10.35789/fib.BULL.0109.Ch06 SN - 1562-3610 VL - fib Bulletin 109 SP - 104 EP - 126 PB - Fédération internationale du béton (fib) CY - Lausanne AN - OPUS4-59341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Henning, L. M. A1 - Müller, J. T. A1 - Smales, Glen Jacob A1 - Pauw, Brian Richard A1 - Schmidt, J. A1 - Bekheet, M. F. A1 - Gurlo, A. A1 - Simon, U. T1 - Hierarchically porous and mechanically stable monoliths from ordered mesoporous silica and their water filtration potential N2 - Mechanically stable structures with interconnected hierarchical porosity combine the benefits of both small and large pores, such as high surface area, pore volume, and good mass transport capabilities. Hence, lightweight micro-/meso-/macroporous monoliths are prepared from ordered mesoporous silica COK-12 by means of spark plasma sintering (SPS, S-sintering) and compared to conventionally (C-) sintered monoliths. A multi-scale model is developed to fit the small angle X-ray scattering data and obtain information on the hexagonal lattice parameters, pore sizes from the macro to the micro range, as well as the dimensions of the silica population. For both sintering techniques, the overall mesoporosity, hexagonal pore ordering, and amorphous character are preserved. The monoliths' porosity (77–49%), mesopore size (6.2–5.2 nm), pore volume (0.50–0.22 g cm-3 ), and specific surface area (451–180 m2 g-1) decrease with increasing processing temperature and pressure. While the difference in porosity is enhanced, the structural parameters between the C-and S-sintered monoliths are largely converging at 900 C, except for the mesopore size and lattice parameter, whose dimensions are more extensively preserved in the S-sintered monoliths, however, coming along with larger deviations from the theoretical lattice. Their higher mechanical properties (biaxial strength up to 49 MPa, 724 MPa HV 9.807 N) at comparable porosities and ability to withstand ultrasonic treatment and dead-end filtration up to 7 bar allow S-sintered monoliths to reach a high permeance (2634 L m-2 h-1 bar-1), permeability (1.25 x 10^-14 m2), and ability to reduce the chemical oxygen demand by 90% during filtration of a surfactant-stabilized oil in water emulsion, while indicating reasonable resistance towards fouling. KW - SAXS KW - Hierarchically porous KW - Silica KW - Water filtration PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555928 DO - https://doi.org/10.1039/D2NA00368F SN - 2516-0230 SP - 1 EP - 17 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-55592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baytekin, H.T. A1 - Wirth, Thomas A1 - Gross, Thomas A1 - Treu, Dieter A1 - Sahre, Mario A1 - Theisen, J. A1 - Schmidt, M. A1 - Unger, Wolfgang T1 - Determination of wettability of surface-modified hot-embossed polycarbonate wafers used in microfluidic device fabrication via XPS and ToF-SIMS N2 - The wettability of the surfaces inside the microchannels of a microfluidic device is an important property considering a liquid flows through them. Contact angle measurements usually applied to test the wettability of surfaces cannot be used for an analysis of microchannel walls within microfluidic devices. A workaround is the use of surface analytical methods, which are able to reach points of interest in microchannels and may provide information on the surface chemistry established there. In calibrating these methods by using flat polymer wafers, where the contact angle can be measured as usual, data measured in real microchannels can be evaluated in terms of wetting properties. Reference wafers of bisphenol-A polycarbonate, a polymeric material that is often used in fluidic microdevice fabrication, were treated under different oxygen plasma conditions. The modified surfaces were characterized by using XPS, time of flight (ToF)-SIMS and atomic force microscope (AFM). Surface chemistry and surface topography have been correlated with contact angle measurements. In addition, effects of ageing or rinsing after plasma treatment have also been investigated. KW - Oxygen plasma KW - Polycarbonate KW - XPS KW - ToF-SIMS KW - Principal component analysis PY - 2008 DO - https://doi.org/10.1002/sia.2724 SN - 0142-2421 SN - 1096-9918 VL - 40 IS - 3-4 SP - 358 EP - 363 PB - Wiley CY - Chichester AN - OPUS4-17340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Dirk A1 - T., Heidermann T1 - Ergebnisse der experimentellen Untersuchungen zur Visualisierung der Wirksamkeit von Deflagrationsrohrsicherungen in einer PVC-U Rohrleitung N2 - Deflagrationsrohrsicherungen sind Sicherheitseinrichtungen, die den Durchfluss von brennbaren Gasen und Dämpfen brennbarer Flüssigkeiten ermöglichen, den Flammendurchschlag und eine weitere Explosionsausbreitung nach der Zündung von explosionsfähigen Gas-/Dampf-Luftgemischen jedoch verhindern sollen. Die Einbaubedingungen sind dabei von besonderer Bedeutung für die Wirksamkeit der Deflagrationsrohrsicherungen. Oft lassen sich aus betrieblichen bzw. verfahrenstechnischen Gründen entsprechende Einbaubedingungen nur schwer oder nicht realisieren. So können beispielsweise Rohrleitungsverzweigungen zusätzliche Turbulenzen induzieren und dadurch zu erhöhten Flammenausbreitungsgeschwindigkeiten und Explosionsdrücken und ggf. zum Versagen der Deflagrationsrohrsicherung führen. Neben den „klassischen“ Untersuchungsmethoden dieser Belastungssituationen von Deflagrationsrohrsicherungen, wie die Erfassung des Explosionsdruckes und der Flammenausbreitungsgeschwindigkeiten, werden in diesem Beitrag die Ergebnisse der visuellen Beobachtungen des Reaktionsverlaufes sowie die Belastungen der Flammendurchschlagsicherung bei unterschiedlichen Einbaubedingungen in den Vordergrund gestellt. Gegenübergestellt wird die Belastungssituation der Flammensperre in einer geraden und einer verzweigten Rohrleitung. Verwendet wurde dafür eine speziell gefertigte Deflagrationsrohrsicherung, die eine Beobachtung des Reaktionsverlaufs im Bereich der spiralförmig gewickelten Metallbändern erlaubt. Zusätzlich wurde im geschützten Bereich in der Rohrleitung eine Kamera installiert, die die Belastungssituation bei den einzelnen Versuchen dokumentierte. Die Ergebnisse bestätigen sehr eindrucksvoll, dass die Belastungssituation der Deflagrationsrohrsicherung sich in Abhängigkeit von der Konfiguration der Rohrleitung entscheidend ändert T2 - 15. BAM/PTB-Kolloquium zur chemischen und physikalischen Sicherheitstechnik CY - Brunswick, Germany DA - 21.05.2019 KW - Flammendurchschlagsicherungen KW - Rohrleitungen KW - Deflagrationen PY - 2019 DO - https://doi.org/10.7795/210.20190521A VL - 15. SP - 1 EP - 10 PB - PTB CY - Braunschweig AN - OPUS4-48084 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -