TY - JOUR A1 - Schulz, T. A1 - Reimann, T. A1 - Bochmann, A. A1 - Vogel, A. A1 - Capraro, B. A1 - Mieller, Björn A1 - Teichert, S. A1 - Töpfer, J. T1 - Sintering behavior, microstructure and thermoelectric properties of calcium cobaltite thickfilms for transversal thermoelectric multilayer generators N2 - The sintering behavior and the thermoelectric performance of Ca3Co4O9 multilayer laminates were studied, and a multilayer thermoelectric generator was fabricated. Compacts and multilayer samples with anisotropic microstructure and residual porosity were obtained after conventional sintering at 920 °C, whereas dense and isotropic multilayer samples were prepared by firing at 1200 °C and reoxidation at 900 °C. A hot-pressed sample has a dense and anisotropic microstructure. Samples sintered at 920 °C exhibit low electrical conductivity due to the low density, whereas the Seebeck coefficient is not sensitive to preparation conditions. However, thermal conductivity of multilayers is very low, and, hence acceptable ZT values are obtained. A ransversal multilayer thermoelectric generator (TMLTEG) was fabricated by stacking layers of Ca3Co4O9 green tapes, AgPd conductor printing, and co-firing at 920 °C. The TMLTEG has a power output of 3 mW at ΔT =200 K in the temperature interval of 25 °C to 300 °C. KW - Thermoelectric oxide KW - Calcium cobaltite KW - Pressure-assisted sintering KW - Multilayer PY - 2018 U6 - https://doi.org/10.1016/j.jeurceramsoc.2017.11.017 SN - 0955-2219 SN - 1873-619X VL - 38 IS - 4 SP - 1600 EP - 1607 PB - Elsevier Ltd. AN - OPUS4-43983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Naghib-zadeh, H. A1 - Oder, Gabriele A1 - Hesse, J. A1 - Reimann, T. A1 - Töpfer, J. A1 - Rabe, Torsten T1 - Effect of oxygen partial pressure on co-firing behavior and magnetic properties of LTCC modules with integrated NiCuZn ferrite layers N2 - Low-κ dielectric LTCC was developed, to realize successful co-firing with NiCuZn ferrite tapes. A critical high-temperature process in the production of highly integrated LTCC modules is the migration of silver from inner conductors into the LTCC glass phase. Intensive silver migration causes strong deformation of LTCC multilayers during firing in air. Silver migration into the LTCC glass phase depends on oxygen content of the sintering atmosphere and can be minimized by sintering in nitrogen atmosphere. However, partial decomposition of NiCuZn-ferrite and formation of cuprite was observed during sintering in nitrogen and, consequently, the permeability of the ferrite decreases. As shown by a combined XRD/thermogravimetric study the co-firing of LTCC modules with silver metallization and integrated ferrite layer demands precise adjustment of oxygen partial pressure. KW - Ferrite KW - Silver diffusion KW - Co-firing KW - LTCC PY - 2016 U6 - https://doi.org/10.1007/s10832-016-0043-0 SN - 1385-3449 SN - 1573-8663 VL - 37 IS - 1-4 SP - 100 EP - 109 PB - Springer Science+Business Media CY - New York AN - OPUS4-38603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -