TY - CONF A1 - Müller, B. A1 - Dahms, A. A1 - Bitter, F. A1 - Wargocki, P. A1 - Olesen, B. A1 - Knudsen, H.N. A1 - Afshari, A. A1 - Jann, Oliver A1 - Horn, Wolfgang A1 - Müller, D. A1 - Airaksinen, M. A1 - Järnström, H. A1 - Tirkkonen, T. A1 - Witterseh, T. T1 - Material labelling: Combined material emission tests and sensory evaluations T2 - Indoor Air 2008, 11th International Conference on Indoor Air Quality and Climate, August 17-22, 2008, Copenhagen, Denmark (Proceedings) T2 - Indoor Air 2008, 11th International Conference on Indoor Air Quality and Climate CY - Copenhagen, Denmark DA - 2008-08-17 KW - Material labelling KW - Emission test KW - Sensory evaluation KW - Odour intensity KW - Acceptability PY - 2008 IS - Paper 1066 SP - 1 EP - 8 AN - OPUS4-18047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Allix, M. A1 - Davis, M.J. A1 - Duran, A. A1 - Höche, T. A1 - Honma, T. A1 - Komatsu, T. A1 - Krüger, S. A1 - Mitra, I. A1 - Müller, Ralf A1 - Nakane, S. A1 - Pascual, M.J. A1 - Schmelzer, J.W. A1 - Zanotto, E.D. A1 - Zhou, S. T1 - Updated definition of glass-ceramics JF - Journal of Non-Crystalline Solids N2 - Glass-ceramics are noted for their unusual combination of properties and manifold commercialized products for consumer and specialized markets. Evolution of novel glass and ceramic processing routes, a plethora of new compositions, and unique exotic nano- and microstructures over the past 60 years led us to review the Definition of glass-ceramics. Well-established and emerging processing methods, such as co-firing, additive manufacturing, and laser patterning are analyzed concerning the core requirements of processing glass-ceramics and the Performance of the final products. In this communication, we propose a revised, updated definition of glass-ceramics, which reads “Glass-ceramics are inorganic, non-metallic materials prepared by controlled crystallization of glasses via different processing methods. They contain at least one type of functional crystalline phase and a residual glass. The volume fraction crystallized may vary from ppm to almost 100%”. KW - Glass-ceramics definition PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464711 DO - https://doi.org/10.1016/j.jnoncrysol.2018.01.033 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 3 EP - 10 PB - Elsevier B.V. AN - OPUS4-46471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schiro, G. A1 - Müller, T. A1 - Verch, G. A1 - Sommerfeld, Thomas A1 - Mauch, Tatjana A1 - Koch, Matthias A1 - Grimm, V. A1 - Müller, M.E.H. T1 - The distribution of mycotoxins in a heterogeneous wheat field in relation to microclimate, fungal and bacterial abundance JF - Journal of Applied Microbiology N2 - Aim: To observe the variation in accumulation of Fusarium and Alternaria mycotoxins across a topographically heterogeneous field and tested biotic (fungal and bacterial abundance) and abiotic (microclimate) parameters as explanatory variables. Methods and Results: We selected a wheat field characterized by a diversified topography, to be responsible for variations in productivity and in canopy-driven microclimate. Fusarium and Alternaria mycotoxins where quantified in wheat ears at three sampling dates between flowering and harvest at 40 points. Tenuazonic acid (TeA), alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN), deoxynivalenol (DON), zearalenone (ZEN) and deoxynivalenol-3-Glucoside (DON.3G) were quantified. In canopy temperature, air and soil humidity were recorded for each point with data-loggers. Fusarium spp. as trichothecene producers, Alternaria spp. and fungal abundances were assessed using qPCR. Pseudomonas fluorescens bacteria were quantified with a culture based method. We only found DON, DON.3G, TeA and TEN to be ubiquitous across the whole field, while AME, AOH and ZEN were only occasionally detected. Fusarium was more abundant in spots with high soil humidity, while Alternaria in warmer and drier spots. Mycotoxins correlated differently to the observed explanatory variables: positive correlations between DON accumulation, tri 5 gene and Fusarium abundance were clearly detected. The correlations among the others observed variables, such as microclimatic conditions, varied among the sampling dates. The results of statistical model identification do not exclude that species coexistence could influence mycotoxin production. Conclusions: Fusarium and Alternaria mycotoxins accumulation varies heavily across the field and the sampling dates, providing the realism of landscapescale studies. Mycotoxin concentrations appear to be partially explained by biotic and abiotic variables. Significance and Impact of the Study: We provide a useful experimental design and useful data for understanding the dynamics of mycotoxin biosynthesis in wheat. KW - Alternaria KW - Deoxynivalenol KW - Food Safety KW - Fusarium KW - Pseudomonas fluorescens KW - Tenuazonic acid PY - 2019 DO - https://doi.org/10.1111/jam.14104 SN - 1365-2672 SN - 1364-5072 VL - 126 IS - 1 SP - 177 EP - 190 PB - Wiley AN - OPUS4-47161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seah, M.P. A1 - Spencer, S.J. A1 - Bensebaa, F. A1 - Vickridge, I. A1 - Danzebrink, H. A1 - Krumrey, M. A1 - Gross, Thomas A1 - Österle, Werner A1 - Wendler, E. A1 - Rheinländer, B. A1 - Azuma, Y. A1 - Kojima, I. A1 - Suzuki, N. A1 - Suzuki, M. A1 - Tanuma, S. A1 - Moon, D.W. A1 - Lee, H.J. A1 - Cho, H.M. A1 - Chen, H.Y. A1 - Wee, A. T. S. A1 - Osipowicz, T. A1 - Pan, J.S. A1 - Jordaan, W.A. A1 - Hauert, R. A1 - Klotz, U. A1 - van der Marel, C. A1 - Verheijen, M. A1 - Tamminga, Y. A1 - Jeynes, C. A1 - Bailey, P. A1 - Biswas, S. A1 - Falke, U. A1 - Nguyen, N.V. A1 - Chandler-Horowitz, D. A1 - Ehrstein, J.R. A1 - Muller, D. A1 - Dura, J.A. T1 - Critical review of the current status of thickness measurements for ultrathin SiO2 on Si - Part V: Results of a CCQM pilot study JF - Surface and interface analysis N2 - Results are reported from a pilot study under the Consultative Committee for Amount of Substance (CCQM) to compare measurements of and resolve any relevant measurement issues in, the amount of thermal SiO2 oxide on (100) and (111) orientation Si wafer substrates in the thickness range 1.5 - 8 nm. As a result of the invitation to participate in this activity, 45 sets of measurements have been made in different laboratories using 10 analytical methods: medium-energy ion scattering spectrometry (MEIS), nuclear reaction analysis (NRA), RBS, elastic backscattering spectrometry (EBS), XPS, SIMS, ellipsometry, grazing-incidence x-ray reflectrometry (GIXRR), neutron reflectometry and transmission electron microscopy (TEM). The measurements are made on separate sets of 10 carefully prepared samples, all of which have been characterised by a combination of ellipsometry and XPS using carefully established reference conditions and reference parameters. The results have been assessed against the National Physical Laboratory (NPL) data and all show excellent linearity. The remaining data sets correlate with the NPL data with average root-mean-square scatters of 0.15 nm, half being better than 0.1 nm and a few at or better than 0.05 nm. Each set of data allows a relative scaling constant and a zero thickness offset to be determined. Each method has an inherent zero thickness offset between 0 nm and 1 nm and it is these offsets, measured here for the first time, that have caused many problems in the past. There are three basic classes of offset: water and carbonadeous contamination equivalent to ~1 nm as seen by ellipsometry; adsorbed oxygen mainly from water at an equivalent thickness of 0.5 nm as seen by MEIS, NRA, RBS and possibly GIXRR; and no offset as seen by XPS using the Si 2p peaks. Each technique has a different uncertainty for the scaling constant and consistent results have been achieved. X-Ray photoelectron spectroscopy has large uncertainties for the scaling constant but a high precision and, critically, if used correctly, has zero offset. Thus, a combination of XPS and the other methods allows the XPS scaling constant to be determined with low uncertainty, traceable via the other methods. XPS laboratories returning results early were invited to test a new reference procedure. All showed very significant improvements. The reference attenuation lengths thus need scaling by 0.986 ± 0.009 (at an expansion factor of 2) deduced from the data for the other methods. Several other methods have small offsets and, to the extent that these can be shown to be constant or measurable, then these methods will also show low uncertainty. Recommendations are provided for parameters for XPS, MEIS, RBS and NRA to improve their accuracy. KW - Calibration KW - Ellipsometry KW - GIXRR KW - Interlaboratory study KW - MEIS KW - Neutron reflectometry KW - NRA KW - RBS KW - Silicon dioxide KW - SIMS KW - XPS PY - 2004 DO - https://doi.org/10.1002/sia.1909 SN - 0142-2421 SN - 1096-9918 VL - 36 IS - 9 SP - 1269 EP - 1303 PB - Wiley CY - Chichester AN - OPUS4-5549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abou-Ras, D. A1 - Caballero, R. A1 - Fischer, C.-H. A1 - Kaufmann, C.A. A1 - Lauermann, I. A1 - Mainz, R. A1 - Mönig, H. A1 - Schöpke, A. A1 - Stephan, C. A1 - Streeck, C. A1 - Schorr, S. A1 - Eicke, A. A1 - Döbeli, M. A1 - Gade, B. A1 - Hinrichs, J. A1 - Nunney, T. A1 - Dijkstra, H. A1 - Hoffmann, V. A1 - Klemm, D. A1 - Efimova, V. A1 - Bergmaier, A. A1 - Dollinger, G. A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Rockett, A.A. A1 - Perez-Rodriguez, A. A1 - Alvarez-Garcia, J. A1 - Izquierdo-Roca, V. A1 - Schmid, T. A1 - Choi, P.-P. A1 - Müller, M. A1 - Bertram, F. A1 - Christen, J. A1 - Khatri, H. A1 - Collins, R.W. A1 - Marsillac, S. A1 - Kötschau, I. T1 - Comprehensive comparison of various techniques for the analysis of elemental distributions in thin films JF - Microscopy and Microanalysis N2 - The present work shows results on elemental distribution analyses in Cu(In,Ga)Se2 thin films for solar cells performed by use of wavelength-dispersive and energy-dispersive X-ray spectrometry (EDX) in a scanning electron microscope, EDX in a transmission electron microscope, X-ray photoelectron, angle-dependent soft X-ray emission, secondary ion-mass (SIMS), time-of-flight SIMS, sputtered neutral mass, glow-discharge optical emission and glow-discharge mass, Auger electron, and Rutherford backscattering spectrometry, by use of scanning Auger electron microscopy, Raman depth profiling, and Raman mapping, as well as by use of elastic recoil detection analysis, grazing-incidence X-ray and electron backscatter diffraction, and grazing-incidence X-ray fluorescence analysis. The Cu(In,Ga)Se2 thin films used for the present comparison were produced during the same identical deposition run and exhibit thicknesses of about 2 µm. The analysis techniques were compared with respect to their spatial and depth resolutions, measuring speeds, availabilities, and detection limits. KW - Elemental distributions KW - Comparison KW - Depth profiling KW - Chemical mapping KW - Thin films KW - Solar cells KW - Chalcopyrite-type KW - Cu(In,Ga)Se2 PY - 2011 DO - https://doi.org/10.1017/S1431927611000523 SN - 1431-9276 SN - 1435-8115 VL - 17 IS - 5 SP - 728 EP - 751 PB - Cambridge University Press CY - New York, NY AN - OPUS4-24506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nagamine, K. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Honma, T. A1 - Komatsu, T. T1 - Crystallization behavior of lithium iron phosphate glass powders in different atmospheres JF - Journal of the American ceramic society N2 - Crystallization behavior in different atmospheres (air, Ar, and 7% H2/Ar) of lithium iron phosphate glass (33Li2O–33Fe2O3–1Nb2O5–33P2O5 (LFNP)) powders with different sizes of 2–1000 µm was examined. The crystallization peak temperature (Tp) in Ar and 7% H2/Ar decreased with decreasing the particle size of glass powders, but the value of Tp in air was independent of particle size. The crystallized glass obtained by heating to Tp showed the formation of the α-Li3Fe2(PO4)3 and LiFePO4 crystalline phases. Fe2O3 crystals were formed only in the inside of crystallized glass plates in the heating in air. The crystallization of LiFePO4 was largely enhanced in the particle size of <2 µm during the heating in Ar and 7% H2/Ar atmospheres. The main crystallization mechanism in LFNP glass was found to be surface crystallization. Significant shrinkages were observed for glass compacts (pellets) in the heating in 7% H2/Ar. These results suggest that controlling particle sizes and atmospheres enables the design the morphology of LiFePO4 crystals in LFNP glass. KW - DTA KW - Kristallisation KW - Phasenentwicklung KW - Unterschiedliche Atmosphären KW - Lithiumionen-Batterie PY - 2011 DO - https://doi.org/10.1111/j.1551-2916.2011.04579.x SN - 0002-7820 SN - 1551-2916 VL - 94 IS - 9 SP - 2890 EP - 2895 PB - Blackwell Publishing CY - Malden AN - OPUS4-24914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rack, A. A1 - Riesemeier, Heinrich A1 - Zabler, S. A1 - Weitkamp, T. A1 - Müller, Bernd R. A1 - Weidemann, Gerd A1 - Modregger, P. A1 - Banhart, J. A1 - Helfen, L. A1 - Danilewsky, A.N. A1 - Gräber, H.G. A1 - Heldele, R. A1 - Mayzel, B. A1 - Goebbels, Jürgen A1 - Baumbach, T. ED - Stuart R. Stock, T1 - The high-resolution synchrotron-based imaging stations at the BAMline (BESSY) and TopoTomo (ANKA) T2 - Developments in X-Ray Tomography VI (Proceedings of SPIE) N2 - The BAMline at the BESSY light source in Berlin and the TopoTomo beamline at the ANKA synchrotron facility in Karlsruhe (both Germany) operate in the hard X-ray regime (above 6 keV) with similiar photon flux density. For typical imaging applications, a double multilayer monochromator or a filtered white beam is used. In order to optimise the field of view and the resolution of the available indirect pixel detectors, different optical systems have been installed, adapted, respectively, to a large field of view (macroscope) and to high spatial resolution (microscope). They can be combined with different camera systems, ranging from 16-bit dynamic range slow-scan CCDs to fast CMOS cameras. The spatial resolution can be brought substantially beyond the micrometer limit by using a Bragg magnifier. The moderate flux of both beamlines compared to other 3rd generation light sources is compensated by a dedicated scintillator concept. For selected applications, X-ray beam collimation has proven to be a reliable approach to increase the available photon flux density. Absorption contrast, phase contrast, holotomography and refraction-enhanced imaging are used depending on the application. Additionally, at the TopoTomo beamline digital white beam synchrotron topography is performed, using the digital X-ray pixel detectors installed. KW - Microtomography KW - Non-destructive evaluation KW - Coherent imaging KW - X-ray refraction KW - X-ray phase contrast KW - Synchrotron-CT KW - Synchrotron instrumentation KW - Scintillator KW - Bragg magnification KW - Holotomography KW - X-ray topography PY - 2008 DO - https://doi.org/10.1117/12.793721 SN - 0277-786X VL - 7078 SP - 70780X-1 - 70780X-9 AN - OPUS4-18296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Ebert, H.-P. A1 - Reichenauer, G. A1 - Brandt, R. A1 - Braxmeier, S. A1 - Bauer, T. A1 - Tamme, R. A1 - Langer, W. A1 - Hudler, B. A1 - Christ, M. A1 - Sextl, G. A1 - Müller, G. A1 - Helbig, U. A1 - Houbertz, R. A1 - Voigt, W. A1 - Schmidt, H. A1 - Zehl, T. A1 - Mach, Reinhard A1 - Maneck, Heinz-Eberhard A1 - Meyer-Plath, Asmus A1 - Oleszak, Franz A1 - Keuper, M. A1 - Reisert, M. A1 - Burkhardt, H. A1 - Günther, E. A1 - Mehling, H. T1 - Netzwerk zur Überwindung grundlegender Probleme bei der Entwicklung hocheffizienter Latentwärmespeicher auf Basis anorganischer Speichermaterialien KW - Latentwärmespeicher KW - Materialforschung KW - Plasmaverfahren KW - Graphit PY - 2008 SN - 978-3-00-024699-9 SP - 1 EP - 217 CY - Würzburg AN - OPUS4-18273 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Seah, M.P. A1 - Spencer, S.J. A1 - Bensebaa, F. A1 - Vickridge, I. A1 - Danzebrink, H. A1 - Krumrey, M. A1 - Gross, Thomas A1 - Österle, Werner A1 - Wendler, E. A1 - Rheinländer, B. A1 - Azuma, Y. A1 - Kojima, I. A1 - Suzuki, N. A1 - Suzuki, M. A1 - Tanuma, S. A1 - Moon, D.W. A1 - Lee, H.J. A1 - Cho, H.M. A1 - Chen, H.Y. A1 - Wee, A. T. S. A1 - Osipowicz, T. A1 - Pan, J.S. A1 - Jordaan, W.A. A1 - Hauert, R. A1 - Klotz, U. A1 - van der Marel, C. A1 - Verheijen, M. A1 - Tamminga, Y. A1 - Jeynes, C. A1 - Bailey, P. A1 - Biswas, S. A1 - Falke, U. A1 - Nguyen, N.V. A1 - Chandler-Horowitz, D. A1 - Ehrstein, J.R. A1 - Muller, D. A1 - Dura, J.A. T1 - Ultra-thin SiO2 on Si, Part V: Results of a CCQM Pilot Study of Thickness Measurements T2 - NPL Report COAM S 14 KW - SiO2 KW - Thin films KW - Thickness KW - XPS KW - Ellipsometry KW - TEM PY - 2003 SN - 1473-2734 SP - 57 pages AN - OPUS4-4118 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Geburtig, Anja A1 - Wachtendorf, Volker A1 - Trubiroha, P. A1 - Zäh, M. A1 - Schönlein, A. A1 - Müller, A. A1 - Vatahska, T. A1 - Manier, G. A1 - Reichert, T. ED - White, C. C. ED - Martin, J. ED - Chapin, J.T. T1 - Polypropylene numerical photoageing simulation by dose-response functions with respect to irradiation and temperature: vipquali project T2 - Service life prediction of exterior plastics - Vision for the future N2 - The aim of the joint project ViPQuali (Virtual Product Qualification) was to describe a component’s ageing behaviour in a given environment, by numerical simulation. Having chosen polypropylene (PP) as the material, which does not show sensitivity to moisture, the relevant weathering parameters of the dose–response functions could be limited to spectral irradiance and temperature. In artificial irradiation tests, for PP plates of varied stabiliser content, spectral sensitivity as well as temperature dependence of irradiation-caused crack formation was quantified. For that purpose, samples were exposed both to artificial weathering tests at various constant temperatures and to spectrally resolved irradiation. The temperature dependence could be modelled by an Arrhenius fit. For fitting the spectral sensitivity, a plateau function was chosen. Subsequently, the stabiliser content was parameterised and extrapolated. The formed dose–response functions were incorporated into a Computational Fluid Dynamics (CFD) software program, simulating the environment of a sample within a Phoenix-exposed IP/DP (Instrument Panel/Door Panel box) box, based on sun position and weather conditions, including radiation interactions. Observed local effects as well as the general ageing advance of PP hats are compared with respect to simulation and experiment. Resulting from this project, for this most simple example of PP of varied stabiliser content, the time to failure can be estimated for each weathering exposure environment with known time-resolved irradiance and temperature conditions. PY - 2015 SN - 978-3-319-06033-0 SN - 978-3-319-06034-7 DO - https://doi.org/10.1007/978-3-319-06034-7_14 SP - Chapter 14, 215 EP - 229 PB - Springer AN - OPUS4-32062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -