TY - JOUR A1 - Zerbst, Uwe A1 - Bruno, Giovanni A1 - Buffière, J.-Y. A1 - Wegener, T. A1 - Niendorf, T. A1 - Wu, T. A1 - Zhang, X. A1 - Kashaev, N. A1 - Meneghetti, G. A1 - Hrabe, Nik A1 - Madia, Mauro A1 - Werner, Tiago A1 - Hilgenberg, Kai A1 - Koukolikova, M. A1 - Prochazka, R. A1 - Dzugan, J. A1 - Möller, B. A1 - Beretta, S. A1 - Evans, Alexander A1 - Wagener, R. A1 - Schnabel, K. T1 - Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges N2 - This article is an outcome of a workshop on Fatigue of Additive Manufactured Metallic Components jointly organized by the Federal Institute for Materials Research and Testing (BAM) Berlin, Germany and the National Institute of Standards and Technology (NIST) Boulder, CO, U.S.A. The aim of the workshop was a comprehensive discussion of the specific aspects of additively manufactured (AM) components in regard to failure under cyclic loading. Undoubtedly, a better understanding and the further development of approaches for damage tolerant component design of AM parts are among the most significant challenges currently facing the use of these new technologies. This article presents a thorough overview of the workshop discussions. It aims to provide a review of the parameters affecting the damage tolerance of AM parts with special emphasis on the process parameters intrinsic to the AM technologies, the resulting defects and residual stresses. Based on these aspects, concepts for damage tolerant component design for AM are reviewed and critically discussed. KW - Additive manufacturing KW - Fatigue loading KW - Component assessment KW - Damage tolerance KW - Defects KW - Residual stresses PY - 2021 U6 - https://doi.org/10.1016/j.pmatsci.2021.100786 SN - 0079-6425 VL - 121 PB - Elsevier CY - Amsterdam AN - OPUS4-51937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liehr, A. A1 - Wegener, T. A1 - Degener, Sebastian A1 - Bolender, A. A1 - Möller, N. A1 - Niendorf, T. T1 - Experimental Analysis of the Stability of Retained Austenite in a Low‐Alloy 42CrSi Steel after Different Quenching and Partitioning Heat Treatments N2 - Quenching and partitioning (Q&P) steels are characterized by an excellent combination of strength and ductility, opening up great potentials for advanced lightweight components. The Q&P treatment results in microstructures with a martensitic matrix being responsible for increased strength whereas interstitially enriched metastable retained austenite (RA) contributes to excellent ductility. Herein, a comprehensive experimental characterization of microstructure evolution and austenite stability is carried out on a 42CrSi steel being subjected to different Q&P treatments. The microstructure of both conditions is characterized by scanning electron microscopy as well as X‐ray diffraction (XRD) phase analysis. Besides macroscopic standard tensile tests, RA evolution under tensile loading is investigated by in situ XRD using synchrotron and laboratory methods. As a result of different quenching temperatures, the two conditions considered are characterized by different RA contents and morphologies, resulting in different strain hardening behaviors as well as strength and ductility values under tensile loading. In situ synchrotron measurements show differences in the transformation kinetics being rationalized by the different morphologies of the RA. Eventually, the evolution of the phase specific stresses can be explained by the well‐known Masing model. KW - Condensed Matter Physics KW - General Materials Science PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-581618 SN - 1438-1656 VL - 25 IS - 17 SP - 1 EP - 16 PB - Wiley AN - OPUS4-58161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sokolowski-Tinten, K. A1 - Barty, A. A1 - Boutet, S. A1 - Shymanovich, U. A1 - Chapman, H. A1 - Bogan, M. A1 - Marchesini, S. A1 - Hau-Riege, S. A1 - Stojanovic, N. A1 - Bonse, Jörn A1 - Rosandi, Y. A1 - Urbassek, H. M. A1 - Tobey, R. A1 - Ehrke, H. A1 - Cavalleri, A. A1 - Düsterer, S. A1 - Redlin, H. A1 - Frank, M. A1 - Bajt, S. A1 - Schulz, J. A1 - Seibert, M. A1 - Hajdu, J. A1 - Treusch, R. A1 - Bostedt, C. A1 - Hoener, M. A1 - Möller, T. T1 - Short-pulse laser induced transient structure formation and ablation studied with time-resolved coherent XUV-scattering T2 - International high-power laser ablation conference CY - Santa Fe, USA DA - 2010-04-18 KW - Femtosecond laser ablation KW - Free electron lasers KW - Coherent scattering PY - 2010 SN - 978-0-7354-0828-9 N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings IS - 1278 SP - 373 EP - 379 PB - American Institute of Physics CY - Melville, NY, USA AN - OPUS4-22230 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -