TY - GEN A1 - Krüger, Simone A1 - Brademann-Jock, Kerstin A1 - Wachtendorf, Volker A1 - Rauth, W. A1 - Klimmasch, T. A1 - Krüger, P. T1 - Analysis of weathering effects in automotive coatings by thermoluminescence T2 - 28th FATIPEC Congress CY - Budapest, Hungary DA - 2006-06-12 KW - Automotive coatings KW - Weathering KW - Thermoluminescence PY - 2006 SP - 1 EP - 9 CY - Budapest AN - OPUS4-12558 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Rauth, W. A1 - Klimmasch, T. A1 - Krüger, P. T1 - Screening the weathering stability of automotive coatings by chemiluminescence T2 - XXVIIIth FATIPEC Congress CY - Budapest, Hungary DA - 2006-06-12 KW - Automotive coatings KW - Weathering KW - Chemiluminescence PY - 2006 SP - 8 pages CY - Budapest AN - OPUS4-12557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Brademann-Jock, Kerstin A1 - Wachtendorf, Volker A1 - Rauth, W. A1 - Klimmasch, T. A1 - Krüger, P. T1 - Analysis of weathering effects in automotive coatings by thermoluminescence KW - Automotive coatings KW - Weathering KW - Thermoluminescence PY - 2006 SN - 0048-4225 N1 - Sprachen: Englisch/Italienisch - Languages: English/Italian VL - 82 IS - 17 SP - 5 EP - 11 AN - OPUS4-14296 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Brademann-Jock, Kerstin A1 - Rauth, W. A1 - Klimmasch, T. A1 - Krüger, P. T1 - Analysis of weathering effects in automotive coatings using thermoluminescence N2 - Thermally stimulated luminescence (TL) can be used to detect damage in the early stages of degradation after artificial weathering, and to analyze the efficiency of stabilizers used in automotive coatings. TL is particularly suitable for this task due to its inherent high sensitivity to structural, morphological, and chemical changes in macromolecular chains. In this work, TL measurements were carried out for different automotive coatings to follow their degradation progression during artificial weathering. The TL results demonstrate high sensitivity to parameters like stabilizers, matrices, hardeners, and weathering time, and provide an opportunity to monitor the early stages of damage in polymers, which therefore reduce the time required for further outdoor weathering tests. KW - Accelerated weathering KW - Automotive coating KW - Thermoluminescence KW - Sensitive detection KW - Weathering PY - 2008 DO - https://doi.org/10.1007/s11998-007-9072-6 SN - 1547-0091 SN - 1935-3804 VL - 5 IS - 1 SP - 11 EP - 16 PB - Springer CY - Blue Bell, Pa. AN - OPUS4-16722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Wachtendorf, Volker A1 - Rauth, W. A1 - Klimmasch, T. A1 - Krüger, P. T1 - Screening the weathering stability of automotive coatings by chemiluminescence N2 - Chemiluminescence (CL) is a sensitive method of investigating the thermo-oxidative stability of polymers in the early stages of degradation. Therefore, CL measurements were applied to different automotive coatings to evaluate their degradation behavior during artificial weathering. In this work, CL measurements were carried out for different automotive coatings to follow their degradation behavior during artificial weathering. The CL emission depends on sample-specific parameters like stabilizer, matrix, or hardener; experimental parameters like the oxygen partial pressure; and exposure parameters like the duration of weathering. The potential of CL could be demonstrated by classifying materials into categories of good, medium, and low degradation performance at a much earlier stage of weathering exposure than in combination with the usual visual detection of weathering effects. KW - Accelerated weathering KW - Coating KW - Chemiluminescence KW - Sensitive detection KW - Weathering PY - 2008 DO - https://doi.org/10.1007/s11998-007-9071-7 SN - 1547-0091 SN - 1935-3804 VL - 5 IS - 1 SP - 17 EP - 24 PB - Springer CY - Blue Bell, Pa. AN - OPUS4-16723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engl, T. A1 - Eberl, N. A1 - Gorse, C. A1 - Krüger, T. A1 - Schmidt, T. A1 - Plarre, Rüdiger A1 - Adler, C. A1 - Kaltenpoth, M. T1 - Ancient symbiosis confers desiccation resistance to stored grain pest beetles N2 - Microbial symbionts of insects provide a range of ecological traits to their hosts that are beneficial in the context of biotic interactions. However, little is known about insect symbiont-mediated adaptation to the abiotic environment, for example, temperature and humidity. Here, we report on an ancient clade of intracellular, bacteriome-located Bacteroidetes symbionts that are associated with grain and Wood pest beetles of the phylogenetically distant families Silvanidae and Bostrichidae. In the saw-toothed grain beetle Oryzaephilus surinamensis, we demonstrate that the symbionts affect cuticle thickness, melanization and hydrocarbon profile, enhancing desiccation resistance and thereby strongly improving fitness under dry conditions. Together with earlier observations on Symbiont contributions to cuticle biosynthesis in weevils, our findings indicate that convergent acquisitions of bacterial mutualists represented key adaptations enabling diverse pest beetle groups to survive and proliferate under the low ambient humidity that characterizes dry grain storage facilities. KW - Bacteroidetes KW - Cuticle KW - Desiccation resistance KW - Grain pest beetles KW - Symbiosis PY - 2017 DO - https://doi.org/10.1111/mec.14418 SN - 1365-294X SN - 0962-1083 VL - 27 IS - 8 SP - 2095 EP - 2108 AN - OPUS4-44013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Allix, M. A1 - Davis, M.J. A1 - Duran, A. A1 - Höche, T. A1 - Honma, T. A1 - Komatsu, T. A1 - Krüger, S. A1 - Mitra, I. A1 - Müller, Ralf A1 - Nakane, S. A1 - Pascual, M.J. A1 - Schmelzer, J.W. A1 - Zanotto, E.D. A1 - Zhou, S. T1 - Updated definition of glass-ceramics N2 - Glass-ceramics are noted for their unusual combination of properties and manifold commercialized products for consumer and specialized markets. Evolution of novel glass and ceramic processing routes, a plethora of new compositions, and unique exotic nano- and microstructures over the past 60 years led us to review the Definition of glass-ceramics. Well-established and emerging processing methods, such as co-firing, additive manufacturing, and laser patterning are analyzed concerning the core requirements of processing glass-ceramics and the Performance of the final products. In this communication, we propose a revised, updated definition of glass-ceramics, which reads “Glass-ceramics are inorganic, non-metallic materials prepared by controlled crystallization of glasses via different processing methods. They contain at least one type of functional crystalline phase and a residual glass. The volume fraction crystallized may vary from ppm to almost 100%”. KW - Glass-ceramics definition PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464711 DO - https://doi.org/10.1016/j.jnoncrysol.2018.01.033 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 3 EP - 10 PB - Elsevier B.V. AN - OPUS4-46471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neffe, A.T. A1 - Von Ruesten-Lange, M. A1 - Braune, S. A1 - Lützow, K. A1 - Roch, T. A1 - Richau, K. A1 - Krüger, A. A1 - Becherer, T. A1 - Thünemann, Andreas A1 - Jung, F. A1 - Haag, R. A1 - Lendlein, A. T1 - Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility N2 - Hemocompatible materials are needed for internal and extracorporeal biomedical applications, which should be realizable by reducing protein and thrombocyte adhesion to such materials. Polyethers have been demonstrated to be highly efficient in this respect on smooth surfaces. Here, we investigate the grafting of oligo- and polyglycerols to rough poly(ether imide) membranes as a polymer relevant to biomedical applications and show the reduction of protein and thrombocyte adhesion as well as thrombocyte activation. It could be demonstrated that, by performing surface grafting with oligo- and polyglycerols of relatively high polydispersity (>1.5) and several reactive groups for surface anchoring, full surface shielding can be reached, which leads to reduced protein adsorption of albumin and fibrinogen. In addition, adherent thrombocytes were not activated. This could be clearly shown by immunostaining adherent proteins and analyzing the thrombocyte covered area. The presented work provides an important strategy for the development of application relevant hemocompatible 3D structured materials. KW - Nanotechnology KW - thrombocyte adhesion KW - biomedical applications PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-308196 DO - https://doi.org/10.1039/c4tb00184b SN - 2050-750X SN - 2050-7518 VL - 2 IS - 23 SP - 3626 EP - 3635 PB - Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-30819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ringleb, F. A1 - Eylers, K. A1 - Teubner, T. A1 - Boeck, T. A1 - Symietz, Christian A1 - Bonse, Jörn A1 - Andree, Stefan A1 - Krüger, Jörg A1 - Heidmann, B. A1 - Schmid, M. A1 - Lux-Steiner, M. T1 - Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing N2 - A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD. KW - Femtosecond laser KW - Physical vapor deposition KW - Indium KW - Molybdenum substrate KW - Microconcentrator solar cell PY - 2016 DO - https://doi.org/10.1063/1.4943794 SN - 0003-6951 VL - 108 IS - 11 SP - 111904-1 EP - 111904-4 AN - OPUS4-35602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heidmann, B. A1 - Ringleb, F. A1 - Eylers, K. A1 - Levcenko, S. A1 - Bonse, Jörn A1 - Andree, Stefan A1 - Krüger, Jörg A1 - Unold, T. A1 - Boeck, T. A1 - Lux-Steiner, M. C. A1 - Schmid, M. T1 - Local growth of CuInSe2 micro solar cells for concentrator application N2 - A procedure to fabricate CuInSe2 (CISe) micro-absorbers and solar cells for concentrator applications is presented. The micro-absorbers are developed from indium precursor islands, which are deposited on a molybdenum coated glass substrate (back contact), followed by deposition of copper on top and subsequent selenization as well as selective etching of copper selenides. In order to compare the properties of the locally grown absorbers to those of conventional large area CISe films, we systematically examine the compositional and morphological homogeneity of the micro absorbers and carry out photoluminescence measurements. Preliminary devices for micro-concentrator solar cell applications are fabricated by optimizing the copper to indium ratio and the size of the indium precursor islands. The resulting micro solar cells provide a characteristic I–V curve under standard illumination conditions (1 sun). KW - Micro solar cells KW - Light concentration KW - CuInSe2 KW - Absorber optimization KW - Chalcopyrite PY - 2017 UR - https://www.sciencedirect.com/science/article/pii/S2468606917300953 DO - https://doi.org/10.1016/j.mtener.2017.10.010 SN - 2468-6069 VL - 6 IS - December 2017 SP - 238 EP - 247 PB - Elsevier Ltd. AN - OPUS4-42801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ringleb, F. A1 - Eylers, K. A1 - Teubner, T. A1 - Schramm, H.-P. A1 - Symietz, Christian A1 - Bonse, Jörn A1 - Andree, Stefan A1 - Heidmann, B. A1 - Schmid, M. A1 - Krüger, Jörg A1 - Boeck, T. T1 - Growth and shape of indium islands on molybdenum at micro-roughened spots created by femtosecond laser pulses N2 - Indium islands on molybdenum coated glass can be grown in ordered arrays by surface structuring using a femtosecond laser. The effect of varying the molybdenum coated glass substrate temperature and the indium deposition rate on island areal density, volume and geometry is investigated and evaluated in a physical vapor deposition (PVD) process. The joined impact of growth conditions and spacing of the femtosecond laser structured spots on the arrangement and morphology of indium islands is demonstrated. The results yield a deeper understanding of the island growth and its precise adjustment to industrial requirements, which is indispensable for a technological application of such structures at a high throughput, for instance as precursors for the preparation of Cu(In,Ga)Se2 micro concentrator solar cells. KW - Indium islands KW - Femtosecond laser patterning KW - Diffusion KW - CIGSe micro solar cells PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216325764 DO - https://doi.org/10.1016/j.apsusc.2016.11.135 SN - 0169-4332 SN - 1873-5584 VL - 418 SP - 548 EP - 553 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kautek, Wolfgang A1 - Hertwig, Andreas A1 - Martin, Sven A1 - Krüger, Jörg A1 - Lenzner, Matthias A1 - Spielmann, C. A1 - Lenner, M. A1 - Bunte, J. A1 - Puester, T. A1 - Burmester, T. A1 - Fiedler, A. A1 - Heberer, E. A1 - Brose, M. A1 - Stingl, A. A1 - Kiehl, P. A1 - Hönigsmann, H. A1 - Trautinger, F. A1 - Grabner, G. T1 - Safety in Femtosecond Laser Technology - Recent Results of a European Research Project (406) T2 - International Laser Safety Conference 2003 ; ILSC 2003 CY - Jacksonville, FL, USA DA - 2003-03-10 PY - 2003 SN - 0-912035-38-2 SP - 1(?) EP - 10(?) PB - Laser Institute of America CY - Orlando, Fla. AN - OPUS4-2259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bunte, J. A1 - Barcikowski, S. A1 - Burmester, T. A1 - Püster, T. A1 - Hertwig, Andreas A1 - Kautek, Wolfgang A1 - Krüger, Jörg A1 - Martin, Sven A1 - Spielmann, C. A1 - Lenner, M. A1 - Brose, M. T1 - Sicherer Umgang mit Ultrakurzpuls-Lasern, Teil 1: Primäre Gefährdungen PY - 2005 SN - 0945-8875 IS - 2 SP - 6 EP - 11 PB - Magazin-Verl. CY - Bad Nenndorf AN - OPUS4-11001 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bunte, J. A1 - Barcikowski, S. A1 - Burmester, T. A1 - Püster, T. A1 - Hertwig, Andreas A1 - Kautek, Wolfgang A1 - Krüger, Jörg A1 - Martin, Sven A1 - Spielmann, C. A1 - Lenner, M. A1 - Brose, M. T1 - Sicherer Umgang mit Ultrakurzpuls-Lasern, Teil 2: Sekundäre Gefährdungen PY - 2005 SN - 0945-8875 IS - 4 SP - 13 EP - 18 PB - Magazin-Verl. CY - Bad Nenndorf AN - OPUS4-11002 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heidmann, B. A1 - Andree, Stefan A1 - Levcenko, S. A1 - Unold, T. A1 - Abou-Ras, D. A1 - Schäfer, N. A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Schmid, M. T1 - Fabrication of regularly arranged chalcopyrite micro solar cells via femtosecond laser-induced forward transfer for concentrator application N2 - A laser-based bottom-up technique for the fabrication of Cu(In,Ga)Se2 (CIGSe) micro solar cells is presented. We use femtosecond laser-induced forward transfer (LIFT) to transport a metallic precursor composed of copper, indium, and gallium onto a molybdenum back contact layer on a glass substrate. A CIGSe absorber forms by subsequent selenization. An array of micro absorbers with defined spacing is fabricated to solar cells and characterized under concentrated light illumination. The solar cell array exhibited a conversion efficiency of 1.4‰ at 1 sun as well as a significant efficiency enhancement of 68% rel. under 20-fold concentration. This work demonstrates the possibility of directly grown micrometer-sized solar cells based on chalcogenide absorber layers, enabling effective material usage. KW - Micro solar cells KW - Light concentration KW - LIFT KW - Chalcopyrite KW - Femtosecond laser PY - 2018 DO - https://doi.org/10.1021/acsaem.7b00028 SN - 2574-0962 VL - 1 IS - 1 SP - 27 EP - 31 PB - ACS CY - Washington, DC AN - OPUS4-43999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Andree, Stefan A1 - Heidmann, B. A1 - Ringleb, F. A1 - Eylers, K. A1 - Bonse, Jörn A1 - Boeck, T. A1 - Schmid, M. A1 - Krüger, Jörg T1 - Femtosecond laser pulses for photovoltaic bottom-up strategies N2 - A promising technology in photovoltaics is based on micro-concentrator solar cells, where the photovoltaic active area is realized as an array of sub-millimeter sized cells onto which the incident light is focused via microlenses. This approach allows to increase the cell efficiency and to realize much more compact modules compared to macroscopic concentrator devices. At the same time, expensive raw materials can be saved, which is of interest, for example, with respect to indium in the case of copper-indium-gallium-diselenide (CIGSe) thin film solar cells. Two methods to produce micro-sized precursors of CIGSe absorbers on molybdenum are presented using 30-fs laser pulses at 790 nm wavelength. On the one hand, a multi pulse surface structuring of the molybdenum film or the underlying glass substrate and a subsequent physical vapor deposition were used for a site-selective aggregation of indium droplets. On the other hand, a single pulse laser-induced forward transfer was utilized to selectively deposit combined copper-indium precursor pixels on the molybdenum back contact of the solar cell. Post-processing (selenization, isolation, contacting) of the laser-generated micro-sized precursors results in functional CIGSe solar cells. T2 - 10. Mittweidaer Lasertagung CY - Mittweida, Germany DA - 16.11.2017 KW - Copper indium gallium diselenide (CIGSe) KW - Micro solar cell KW - Femtosecond laser KW - Laser ablation KW - Laser-induced forward transfer (LIFT) PY - 2017 SN - 1437-7624 VL - 2 SP - 1 EP - 4 PB - Hochschule Mittweida CY - Mittweida AN - OPUS4-42988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmid, M. A1 - Heidmann, B. A1 - Ringleb, F. A1 - Eylers, K. A1 - Ernst, O. A1 - Andree, Stefan A1 - Bonse, Jörn A1 - Boeck, T. A1 - Krüger, Jörg T1 - Locally grown Cu(In,Ga)Se2 micro islands for concentrator solar cells N2 - Light concentration opens up the path to enhanced material efficiency of solar cells via increased conversion efficiency and decreased material requirement. For true material saving, a fabrication method allowing local growth of high quality absorber material is essential. We present two scalable fs-laser based approaches for bottom-up growth of Cu(In,Ga)Se2 micro islands utilizing either site-controlled assembly of In(,Ga) droplets on laser-patterned substrates during physical vapor deposition, or laser-induced forward transfer of (Cu,In,Ga) layers for local precursor arrangement. The Cu(In,Ga)Se2 absorbers formed after selenization can deliver working solar devices showing efficiency enhancement under light concentration. T2 - SPIE OPTO, 2018 CY - San Francisco, USA DA - 29.01.2018 KW - Chalcopyrite KW - Cu(In,Ga)Se2 KW - Fs-laser patterning KW - Laser-induced forward transfer KW - Micro solar cell PY - 2018 SN - 978-1-5106-1540-3 SN - 0277-786X SN - 1996-756X VL - 10527 SP - 1052707-1 EP - 1052707-9 PB - SPIE CY - Bellingham, WA, USA AN - OPUS4-44450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Andree, Stefan A1 - Heidmann, B. A1 - Ringleb, F. A1 - Eylers, K. A1 - Bonse, Jörn A1 - Boeck, T. A1 - Schmid, M. A1 - Krüger, Jörg T1 - Production of precursors for micro-concentrator solar cells by femtosecond laser-induced forward transfer N2 - Single-pulse femtosecond laser-induced forward transfer (LIFT, 30 fs, 790 nm) is used to deposit micron-sized dots of copper and/or indium onto a molybdenum layer on glass. Such systems can serve as precursors for the bottom-up manufacturing of micro-concentrator solar cells based on copper-indium-gallium-diselenide. The influence of the thickness of the copper, indium and combined copper-indium donor layers on the quality of the transferred dots was qualified by scanning electron microscopy, energy-dispersive X-ray analysis, and optical microscopy. The potential for manufacturing of a spatial arrangement adapted to the geometry of micro-lens arrays needed for micro-concentrator solar cells is demonstrated. T2 - EMRS Spring Meeting 2017, Symposium X “New frontiers in laser interaction: from hard coatings to smart materials" CY - Strasbourg, France DA - 22.05.2017 KW - Laser-induced forward transfer (LIFT) KW - Femtosecond laser KW - Micro-concentrator solar cell KW - Copper-indium-gallium-diselenide KW - CIGSe PY - 2017 DO - https://doi.org/10.1007/s00339-017-1282-x SN - 1432-0630 SN - 0947-8396 VL - 123 SP - Article 670, 1 EP - 8 AN - OPUS4-42273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ringleb, F. A1 - Andree, Stefan A1 - Heidmann, B. A1 - Bonse, Jörn A1 - Eylers, K. A1 - Ernst, O. A1 - Boeck, T. A1 - Schmid, M. A1 - Krüger, Jörg T1 - Femtosecond laser-assisted fabrication of chalcopyrite micro-concentrator photovoltaics N2 - Micro-concentrator solar cells offer an attractive way to further enhance the efficiency of planar-cell technologies while saving absorber material. Here, two laser-based bottom-up processes for the fabrication of regular arrays of CuInSe2 and Cu(In,Ga)Se2 microabsorber islands are presented, namely one approach based on nucleation and one based on laser-induced forward transfer. Additionally, a procedure for processing these microabsorbers to functioning micro solar cells connected in parallel is demonstrated. The resulting cells show up to 2.9% efficiency and a significant efficiency enhancement under concentrated Illumination. KW - Chalcopyrite KW - Femtosecond laser patterning KW - Laser-induced forward transfer KW - Micro-concentrator solar cell KW - Photovoltaics PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-470026 DO - https://doi.org/10.3762/bjnano.9.281 SN - 2190-4286 VL - 9 SP - 3025 EP - 3038 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-47002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebauer, D. A1 - Gutiérrez, R, A1 - Marx, S. A1 - Butler, M. A1 - Grahl, K. A1 - Thiel, T. A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Pirskawetz, Stephan A1 - Breit, W. A1 - Schickert, M. A1 - Krüger, M. T1 - Interrelated dataset of rebound numbers, ultrasonic pulse velocities and compressive strengths of drilled concrete cores from an existing structure and new fabricated concrete cubes N2 - Two test series were examined using nondestructive measuring methods by six independent laboratories before determining their compressive strength. The nondestructive test methods used were the rebound hammer and ultrasonic pulse velocity measurement. Two types of geometries were investigated: drilled cores and cubes. The measurement procedure for each of these datasets is conditioned to the geometry and is therefore different. The first series consists of 20 drilled cores (approximately diameter/height = 10 cm/20 cm) from the 55-year-old Lahntal Viaduct near Limburg, Germany. After preparation in the first laboratory, the lateral surface of the drilled cores was tested with the rebound hammer using a given pattern. Every laboratory tested every drilled core at different locations. Ultrasonic measurements in transmission were performed repeatedly at predefined points on the flat surfaces of the specimen. The second series consisted of 25 newly manufactured concrete cubes of a mix with a target concrete strength class of C30/37. The edge length was 15 cm. Each laboratory received five specimens of this test series. Thus, contrary to the first series, each specimen was tested by only one laboratory. Two side faces of each cube were tested with the rebound hammer. In addition, ultrasonic measurements were performed by one laboratory. The time of flight was measured between the tested side faces of the rebound hammer at different positions. For both series, rebound hammers were used to determine the R-value as well as the Q-value. The rebound hammer models within the laboratories were always the same, while they differed between the laboratories. The ultrasonic measurements took place with different measurement systems and couplants. Finally, both specimen series were tested destructively for compressive strength. The dataset contains the raw data summarized in tabular form. In addition, relevant calculated data are included in some cases. For the ultrasonic measurements, the time of flight has already been converted into the ultrasonic velocity. Besides, in addition to the raw data of the compressive strength test (force, weight, and geometry values), the calculated compressive strengths and densities are also provided. KW - Nondestructive testing KW - Ultra sound KW - Rebound hammer KW - Existing structure KW - Civil engineering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574655 DO - https://doi.org/10.1016/j.dib.2023.109201 SN - 2352-3409 VL - 48 IS - 109201 SP - 1 EP - 13 PB - Elsevier Inc. AN - OPUS4-57465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -