TY - JOUR A1 - Seuthe, T. A1 - Grehn, M. A1 - Mermillod-Blondin, A. A1 - Eichler, H.J. A1 - Bonse, Jörn A1 - Eberstein, M. T1 - Structural modifications of binary lithium silicate glasses upon femtosecond laser pulse irradiation probed by micro-Raman spectroscopy N2 - The effects of single femtosecond laser pulse irradiation (130 fs pulse duration, 800 nm center wavelength) on the structure of binary lithium silicate glasses of varying chemical compositions were investigated by micro-Raman spectroscopy. Permanent modifications were generated at the surface of the glass samples with varying laser fluences in the ablative regime and evaluated for changes in the corresponding Raman band positions and bandwidths. For increasing laser fluences, the position of certain Raman bands changed, indicating an increase in the mass density of the glass inside the irradiated area. Simultaneously, the widths of all investigated bands increased, indicating a higher degree of disorder in the glass structure with respect to bond-angle and bond-length variations. PY - 2013 U6 - https://doi.org/10.1364/OME.3.000755 SN - 2159-3930 VL - 3 IS - 6 SP - 755 EP - 764 PB - OSA CY - Washington, DC AN - OPUS4-28372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grehn, M. A1 - Tsai, W.J. A1 - Höfner, M. A1 - Seuthe, T. A1 - Bonse, Jörn A1 - Mermillod-Blondin, A. A1 - Rosenfeld, A. A1 - Hennig, J. A1 - Achtstein, A. W. A1 - Theiss, C. A1 - Woggon, U. A1 - Eberstein, M. A1 - Eichler, H.J. T1 - Nonlinear optical properties of binary and ternary silicate glasses upon near-infrared femtosecond pulse laser irradiation N2 - Some nonlinear optical properties such as the nonlinear refractive index and the nonlinear effective absorption, as well as the laser-induced single-pulse ablation threshold are characterized for a series of binary and ternary silicate glasses upon irradiation with near-infrared femtosecond laser pulses (800 nm, 130 fs). The laser-induced ablation threshold varies from 2.3 J/cm² in case of potassium silicate glass up to 4.3 J/cm² in case of Fused Silica. Nonlinear refractive indices are qualitatively similar within the range 1.7-2.7×10-16 cm²/W. Complementary optical and physico-chemical properties like band gap energy and the glass transformation temperature have been measured for all the glasses. T2 - International symposium on high power laser ablation 2012 CY - Santa Fe, NM, USA DA - 30.04.2012 KW - Laser-induced damage threshold KW - Laser ablation KW - Nonlinear refractive index KW - Silicate glass systems KW - Glass transformation temperature KW - Coefficient of thermal expansion PY - 2012 SN - 978-0-7354-1068-8 U6 - https://doi.org/10.1063/1.4739918 N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings VL - 1464 SP - 660 EP - 670 AN - OPUS4-26318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seuthe, T. A1 - Höfner, M. A1 - Reinhardt, F. A1 - Tsai, W.J. A1 - Bonse, Jörn A1 - Eberstein, M. A1 - Eichler, H.J. A1 - Grehn, M. T1 - Femtosecond laser-induced modification of potassium-magnesium silicate glasses: An analysis of structural changes by near edge x-ray absorption spectroscopy N2 - The effects of femtosecond laser pulse irradiation on the glass structure of alkaline silicate glasses were investigated by x-ray absorption near edge structure spectroscopy using the beamline of the Physikalisch-Technische Bundesanstalt at the electron synchrotron BESSY II in Berlin (Germany) by analyzing the magnesium Κ-edge absorption peak for different laser fluences. The application of fluences above the material modification threshold (2.1 J/cm²) leads to a characteristic shift of ~1.0 eV in the Κ-edge revealing a reduced (~3%) mean magnesium bond length to the ligated oxygen ions (Mg-O) along with a reduced average coordination number of the Mg ions. KW - Glass KW - Glass structure KW - Laser beam effects KW - Magnesium compounds KW - Potassium compounds KW - XANES PY - 2012 U6 - https://doi.org/10.1063/1.4723718 SN - 0003-6951 SN - 1077-3118 VL - 100 IS - 22 SP - 224101-1 EP - 224101-3 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-25918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grehn, M. A1 - Seuthe, T. A1 - Tsai, W.-J. A1 - Höfner, M. A1 - Achtstein, A. W. A1 - Mermillod-Blondin, A. A1 - Eberstein, M. A1 - Eichler, H.J. A1 - Bonse, Jörn T1 - Nonlinear absorption and refraction of binary and ternary alkaline and alkaline earth silicate glasses N2 - Nonlinear optical properties such as the nonlinear refractive index and nonlinear absorption are characterized by z-scan measurements for a series of silicate glasses upon irradiation with laser pulses of 130 fs duration and 800 nm center wavelength. The stoichiometry of the silicate glasses is varied systematically to reveal the influence of the glass composition on the nonlinear optical properties. Additionally, the thermal properties such as glass–transformation temperature and thermal expansion coefficient are obtained from dilatometric measurements. It is found that the nonlinear refractive index is mainly related to the silica matrix. The nonlinear absorption is increased with the addition of network–forming ions. PY - 2013 U6 - https://doi.org/10.1364/OME.3.002132 SN - 2159-3930 VL - 3 IS - 12 SP - 2132 EP - 2140 PB - OSA CY - Washington, DC AN - OPUS4-29649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grehn, M. A1 - Seuthe, T. A1 - Höfner, M. A1 - Griga, N. A1 - Theiss, C. A1 - Mermillod-Blondin, A. A1 - Eberstein, Markus A1 - Eichler, H. A1 - Bonse, Jörn T1 - Femtosecond-laser induced ablation of silicate glasses and the intrinsic dissociation energy N2 - The relation between ablation threshold fluence upon femtosecond laser pulse irradiation and the average dissociation energy density of silicate based multicomponent glass is studied. A simple model based on multiphoton absorption quantifies the absorbed energy density at the ablation threshold fluence. This energy density is compared to a calculated energy density which is necessary to decompose the glass compound into its atomic constituents. The results confirm that this energy density is a crucial intrinsic material parameter for the description of the femtosecond laser ablation threshold fluence of dielectrics. PY - 2014 U6 - https://doi.org/10.1364/OME.4.000689 SN - 2159-3930 VL - 4 IS - 4 SP - 689 EP - 700 PB - OSA CY - Washington, DC AN - OPUS4-30475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -