TY - JOUR A1 - Schlegel, Moritz-Caspar A1 - Többens, D. A1 - Svetogorov, R. A1 - Krüger, M. A1 - Stock, N. A1 - Reinsch, H. A1 - Wallacher, D. A1 - Stewart, R. A1 - Russina, M. T1 - Conformation-controlled hydrogen storage in the CAU-1 metal-organic framework N2 - We have studied the mechanism of hydrogen storage in the aluminium based metal–organic framework CAU-1 or [Al4(OH)2 OCH3)4(O2C-C6H3NH2-CO2)3] using a complementary multidisciplinary approach of volumetric gas sorption analysis, in situ neutron diffraction and spectroscopy and ab initio calculations. The structure of CAU-1 forms two different types of microporous cages: (i) an octahedral cage with a diameter of about 10 Å and (ii) a tetrahedral cage with a diameter of about 5 Å. Though all metal sites of CAU-1 are fully coordinated, the material exhibits relatively high storage capacities, reaching 4 wt% at a temperature of 70 K. Our results reveal that hydrogen sorption is dominantly driven by cooperative guest–guest interactions and interactions between guest hydrogen molecules and organic linkers. The adsorption of hydrogen on the organic linkers leads to the contraction of the host framework structure and as a result to changes in the electronic potential surface inside the pores. This, in turn, leads to cooperative rearrangement of the molecules inside the pores and to the formation of additionally occupied positions, increasing hydrogen uptake. At the final stage we observe the formation of solid amorphous hydrogen inside the pores. KW - Hydrogen storage KW - MOF KW - X-ray diffraction KW - Neutron diffraction KW - Neutron scattering PY - 2016 DO - https://doi.org/10.1039/c6cp05310f SN - 1463-9076 SN - 1463-9084 VL - 18 SP - 29258 EP - 29267 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-37794 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaiser, E. A1 - Fantin, Andrea A1 - Manzoni, Anna Maria A1 - Hesse, René A1 - Többens, D. M. A1 - Hsu, W.-C. A1 - Murakami, H. A1 - Yeh, A.-C. A1 - Pavel, M. J. A1 - Weaver, M. L. A1 - Zhu, H. A1 - Wu, Y. A1 - Vogel, F. T1 - Elucidating hierarchical microstructures in high entropy superalloys: An integrated multiscale study N2 - In this study, we examine a high entropy superalloy (HESA-Y1: Ni49.37Co20Cr7Fe4Al11.6Ti6Re1Mo0.5W0.5Hf0.03 at%), focusing on hierarchical microstructure formation and its effects on mechanical properties. Thermodynamic modeling using Thermo-Calc predicts equilibrium phase fractions, compositions, and transition temperatures,which are validated by experimental data from differential scanning calorimetry (DSC). Transmission electronmicroscopy (TEM) reveals that secondary aging induces nanometer-sized γ particles within γ’ precipitates, forming a hierarchical γ/γ’ microstructure. Atom probe tomography (APT) confirms supersaturation of γ’ precipitates with γ-forming elements (Co, Cr, Fe), driving γ particle formation, and measures interfacial widths between γ’ and γ phases. Partitioning coefficients derived from APT align with Thermo-Calc predictions for most elements. Vickers microhardness testing shows an increase of about 50 HV in the hierarchical microstructure compared to the conventional one. In situ synchrotron X-ray diffraction (XRD) from 25 to 750 ◦C determines a small, negative lattice misfit δ between γ and γ’ phases, suggesting enhanced microstructural stability, consistent with Thermo-Calc calculations. Our methodological approach enables measurement of the unconstrained lattice parameter of phase-extracted γ’ in a single-crystal XRD setup. Due to their small size and low volume fraction, γ particles do not produce distinct reflections in the X-ray diffractogram. Elucidating hierarchical microstructures across multiple scales, we establish that the presence of Re and Hf and controlled aging processes lead to enhanced mechanical properties, offering valuable insights for the design of advanced high entropy superalloys. KW - High entropy alloys KW - Transmission electron microscopy KW - X-ray diffraction KW - Superalloy PY - 2025 DO - https://doi.org/10.1016/j.matchar.2024.114642 VL - 220 SP - 1 EP - 13 PB - Elsevier Inc. AN - OPUS4-62348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Manzoni, Anna Maria A1 - Dubois, F. A1 - Mousa, M. S. A1 - von Schlippenbach, C. A1 - Többens, D. M. A1 - Yesilcicek, Yasemin A1 - Zaiser, E. A1 - Hesse, René A1 - Haas, S. A1 - Glatzel, U. T1 - On the Formation of Eutectics in Variations of the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy N2 - Superalloy inspired Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy is known for its gamma-gamma' microstructure and the third Heusler phase. Variations of this alloy, gained by replacing 0.5 or 1 at. pct Al by the equivalent amount of Mo, W, Zr, Hf or B, can show more phases in addition to this three-phase morphology. When the homogenization temperature is chosen too high, a eutectic phase formation can take place at the grain boundaries, depending on the trace elements: Mo and W do not form eutectics while Hf, Zr and B do. In order to avoid the eutectic formation and the potential implied grain boundary weakening, the homogenization temperature must be chosen carefully by differential scanning calorimetry measurements. A too low homogenization temperature, however, could impede the misorientation alignment of the dendrites in the grain. The influence of grain boundary phases and incomplete dendrite re-orientation are compared and discussed. KW - High entropy alloy KW - Eutectic KW - Homogenization PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543504 DO - https://doi.org/10.1007/s11661-020-06091-7 VL - 52 IS - 1 SP - 143 EP - 150 PB - Springer AN - OPUS4-54350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Fitch, A.N. A1 - Evans, A. A1 - Ibberson, R.M. A1 - Többens, D.M. A1 - Cranswick, L.M.D. A1 - Dörfel, Ilona A1 - Emmerling, Franziska A1 - Matschat, Ralf T1 - Structural characterization of a coarse-grained transparent silicon carbide powder by a combination of powder diffraction techniques N2 - Diffraction of hard synchrotron radiation as well as constant-wavelength and time-of-flight neutron diffraction were used for the structural characterization of a silicon carbide powder having extremely low levels of chemical impurities, high perfection of the crystalline lattice and a grain size of up to 150 µm. The presence of three polytypes was ascertained and the ratios of their mass fractions were determined to be w15R : w6H = 0.002,3(8) and w4H : w6H = 0.000,6(2). KW - Silicon carbide KW - Polytypes KW - Phase quantification KW - Reference material PY - 2009 DO - https://doi.org/10.1524/zksu.2009.0009 SN - 0930-486X VL - 30 EPDIC 2008 SP - 61 EP - 66 PB - Oldenbourg CY - München AN - OPUS4-20561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yesilcicek, Yasemin A1 - Haas, S. A1 - Suárez Ocano, Patricia A1 - Zaiser, E. A1 - Hesse, René A1 - Többens, D. M. A1 - Glatzel, U. A1 - Manzoni, Anna Maria T1 - Controlling Lattice Misfit and Creep Rate Through the γ' Cube Shapes in the Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy with Hf and W Additions N2 - Trace elements play an important role in the fine-tuning of complex material properties. This study focuses on the correlation of microstructure, lattice misfit and creep properties. The compositionally complex alloy Al10Co25Cr8Fe15Ni36Ti6 (in at. %) was tuned with high melting trace elements Hf and W. The microstructure consists of a γ matrix, γ' precipitates and the Heusler phase and it is accompanied by good mechanical properties for high temperature applications. The addition of 0.5 at.% Hf to the Al10Co25Cr8Fe15Ni36Ti6 alloy resulted in more sharp-edged cubic γ′ precipitates and an increase in the Heusler phase amount. The addition of 1 at.% W led to more rounded γ′ precipitates and the dissolution of the Heusler phase. The shapes of the γ' precipitates of the alloys Al9.25Co25Cr8Fe15Ni36Ti6Hf0.25W0.5 and Al9.25Co25Cr8Fe15Ni36Ti6Hf0.5W0.25, that are the alloys of interest in this paper, create a transition from the well-rounded precipitates in the alloy with 1% W containing alloy to the sharp angular particles in the alloy with 0.5% Hf. While the lattice misfit has a direct correlation to the γ' precipitates shape, the creep rate is also related to the amount of the Heusler phase. The lattice misfit increases with decreasing corner radius of the γ' precipitates. So does the creep rate, but it also increases with the amount of Heusler phase. The microstructures were investigated by SEM and TEM, the lattice misfit was calculated from the lattice parameters obtained by synchrotron radiation measurements. KW - High entropy alloy KW - Lattice misfit KW - Creep KW - Transmission electron microscopy KW - X-ray diffraction PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565655 DO - https://doi.org/10.1007/s44210-022-00009-1 SP - 1 EP - 9 PB - Springer AN - OPUS4-56565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kingsbery, P. A1 - Manzoni, Anna Maria A1 - Suárez Ocano, Patricia A1 - Többens, D. M. A1 - Stephan-Scherb, C. T1 - High‐temperature KCl‐induced corrosion of high Cr and Ni alloys investigated by in‐situ diffraction N2 - High‐temperature KCl‐induced corrosion in laboratory air was observed in situ utilizing X‐ray diffraction. High Cr‐containing model alloys (Fe‐13Cr, Fe‐18Cr‐12Ni, and Fe‐25Cr‐20Ni) were coated with KCl and exposed to dry air at 560°C. KCl‐free alloys were studied in the equivalent atmosphere as a reference. After exposure to KCl‐free environments, all alloys showed the formation of very thin oxide layers, indicating good corrosion resistance. In contrast, KCl‐bearing alloys showed distinct damage after exposure. KW - Corrosion KW - In-situ diffraction KW - High-temperature corrosion PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600831 DO - https://doi.org/10.1002/maco.202314224 SN - 0947-5117 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-60083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Többens, D.M. A1 - Kockelmann, W. A1 - Ibberson, R.M. T1 - On the uncertainty of lattice parameters refined from neutron diffraction data T2 - European Powder Diffraction Conference (EPDIC 9) CY - Prague, Czech Republic DA - 2004-09-02 KW - Uncertainty KW - Lattice parameter refinement KW - Neutron diffraction KW - Rietveld method KW - Ergebnisunsicherheit KW - Rietveld Methode KW - Gitterkonstanten KW - Neutronenbeugung PY - 2006 SN - 0930-486X VL - 23 SP - 21 EP - 26 PB - Oldenbourg CY - München AN - OPUS4-12573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -