TY - CONF A1 - Habel, Wolfgang A1 - Kusche, Nadine A1 - Münzenberger, Sven A1 - Schukar, Vivien T1 - KALFOS - a validation facility for strain transfer characterization of surface-applied strain sensors N2 - Strain sensors embedded in or attached to structural components have to measure the real deformation of the structure over the whole period of use. The user must know how reliably installed sensors provide strain measurement results. For this purpose, test facilities or coupon tests are used. In order to characterize the strain transfer quality from the host structure into surface-applied strain sensors, a unique testing facility has been developed. This facility can be used both for fiber optic and resistance strain sensors. Originally developed for fiber Bragg grating based sensors, the KALFOS facility (=calibration of fiber optic sensors) uses Digital Image Correlation (DIC) and Electronic Speckle Pattern Interferometer (ESPI) as unbiased referencing methods. It is possible to determine experimentally the strain transfer mechanism under combined thermal and mechanical loading conditions. This experimental characterization method will reveal weaknesses in commonly used strain sensors, and the investigation of the material systems used for fiber optic and other strain sensors (particularly the coating/substrate - adhesive combination). The KALFOS facility allows matching of specific measurement requirements with environmental conditions. T2 - SAE 2011 AeroTech Congress & Exhibition CY - Toulouse, France DA - 18.10.2011 KW - Fiber optic sensors KW - Structural health monitoring KW - Validation KW - Strain sensor KW - Surface application PY - 2011 U6 - https://doi.org/10.4271/2011-01-2606 IS - Paper 2011-01-2606 SP - 1 EP - 7 AN - OPUS4-24643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schukar, Vivien A1 - Kadoke, Daniel A1 - Kusche, Nadine A1 - Münzenberger, Sven A1 - Gründer, Klaus-Peter A1 - Habel, Wolfgang T1 - Validation and qualification of surface-applied fibre optic strain sensors using application-independent optical techniques N2 - Surface-applied fibre optic strain sensors were investigated using a unique validation facility equipped with application-independent optical reference systems. First, different adhesives for the sensor's application were analysed regarding their material properties. Measurements resulting from conventional measurement techniques, such as thermo-mechanical analysis and dynamic mechanical analysis, were compared with measurements resulting from digital image correlation, which has the advantage of being a non-contact technique. Second, fibre optic strain sensors were applied to test specimens with the selected adhesives. Their strain-transfer mechanism was analysed in comparison with conventional strain gauges. Relative movements between the applied sensor and the test specimen were visualized easily using optical reference methods, digital image correlation and electronic speckle pattern interferometry. Conventional strain gauges showed limited opportunities for an objective strain-transfer analysis because they are also affected by application conditions. KW - Fiber Bragg grating KW - Surface application KW - Qualification KW - Strain transfer KW - Digital image correlation KW - Electronic speckle pattern interferometry PY - 2012 U6 - https://doi.org/10.1088/0957-0233/23/8/085601 SN - 0957-0233 SN - 1361-6501 VL - 23 IS - 8 SP - 085601-1 - 085601-9 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-26639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schilder, Constanze A1 - Kusche, Nadine A1 - Schukar, Vivien A1 - Münzenberger, Sven A1 - Habel, Wolfgang T1 - Experimental qualification by extensive evaluation of fibre optic strain sensors N2 - Fibre optic strain sensors used in practical applications have to provide reliable measurements. Therefore, the applied sensor and the sensor systems must be validated experimentally. This can be achieved with facilities which use physically independent measurement systems in order to avoid the influences caused by the application of a reference sensor. This paper describes the testing methods of the specially developed validation facility KALFOS for the qualification and evaluation of surface-applied strain sensors. For reliable sensor results, the performance of fibre optic strain patches with and without FBG under combined thermal and mechanical loading was investigated. Additionally, the strain gauge factor of the fibre optic strain patches with FBG was determined experimentally and compared to the specified strain gauge factor. These results will be the basis for the development of guidelines and standards concerning the application of the sensors. KW - Evaluation KW - Qualification KW - Strain transfer KW - Fibre optic sensors KW - Fibre Bragg grating KW - Patch KW - Strain gauge KW - Validation facility KW - Laser extensometer KW - Electronic speckle pattern interferometry PY - 2013 U6 - https://doi.org/10.1088/0957-0233/24/9/094005 SN - 0957-0233 SN - 1361-6501 VL - 24 IS - 9 SP - 094005-1 EP - 094005-7 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-29424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -