TY - JOUR A1 - Xue, Boyang A1 - Wang, Zhangjun A1 - Zhu, Tao A1 - Gu, Yezhen A1 - Sun, Weihong A1 - Chen, Chao A1 - Li, Zhigang A1 - Riedel, Jens A1 - You, Yi T1 - High repetition-rate laser-induced breakdown spectroscopy combined with two-dimensional correlation method for analysis of sea-salt aerosols N2 - Laser-induced breakdown spectroscopy (LIBS) offers a tantalizing glimpse into real-time, on-the-spot aerosol analysis. Yet, the reliance on traditional lasers, with their limitations in energy and frequency, hampers optimal sample handling, dissociation, and excitation. To address those challenges, we propose a novel tactic: utilize a high repetition-rate (rep.-rate) laser with low pulse energy in combination with the two-dimensional correlation (2D-corr.) technique for sea-salt aerosols analyses. By examining the emission patterns from both the laser pulse train and individual pulses, we recognize distinctive analyte-specific rep.-rate responses, which allowed spectral reconstruction of analytes, avoiding background interferences. This discovery enabled the rep.-rate modulation for a 2D-corr. spectroscopy workflow. Consequently, we successfully differentiated between particle-related and air-species-related spectral components, obviating expensive spectrometers or intensified image detectors. For instance, the Na I at 589 nm stemming from aerosols exhibited an entirely different correlation contribution compared to O I at 777 nm, resulting in reconstructed clean aerosol-spectra without spectral peaks originated from air species. This 2D-corr. aerosol LIBS approach shows promising analytical potential streamlining aerosol particle analysis. KW - LIBS KW - Aerosol PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613392 DO - https://doi.org/10.1016/j.sab.2024.107048 SN - 0584-8547 VL - 221 SP - 1 EP - 8 PB - Elsevier AN - OPUS4-61339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -