TY - JOUR A1 - Belsey, N. A. A1 - Cant, D. J. H. A1 - Minelli, C. A1 - Araujo, J. R. A1 - Bock, B. A1 - Brüner, P. A1 - Castner, D. G. A1 - Ceccone, G. A1 - Counsell, J. D. P. A1 - Dietrich, Paul M. A1 - Engelhardt, M. H. A1 - Fearn, S. A1 - Galhardo, C. E. A1 - Kalbe, H. A1 - Kim, J. W. A1 - Lartundo-Rojas, L. A1 - Luftman, H. S. A1 - Nunney, T. S. A1 - Pseiner, J. A1 - Smith, E. F. A1 - Spampinato, V. A1 - Sturm, J. M. A1 - Thomas, A. G. A1 - Treacy, J. P. W. A1 - Veith, L. A1 - Wagstaffe, M. A1 - Wang, H. A1 - Wang, M. A1 - Wang, Y.-C. A1 - Werner, W. A1 - Yang, L. A1 - Shard, A. G. T1 - Versailles Project on Advanced Materials and Standards Interlaboratory Study on Measuring the Thickness and Chemistry of Nanoparticle Coatings Using XPS and LEIS N2 - We report the results of a Versailles Project on Advanced Materials and Standards (VAMAS) interlaboratory study on the measurement of the shell thickness and chemistry of nanoparticle coatings. Peptide-coated gold particles were supplied to laboratories in two forms: a colloidal suspension in pure water and particles dried onto a silicon wafer. Participants prepared and analyzed these samples using either X-ray photoelectron spectroscopy (XPS) or low energy ion scattering (LEIS). Careful data analysis revealed some significant sources of discrepancy, particularly for XPS. Degradation during transportation, storage, or sample preparation resulted in a variability in thickness of 53%. The calculation method chosen by XPS participants contributed a variability of 67%. However, variability of 12% was achieved for the samples deposited using a single method and by choosing photoelectron peaks that were not adversely affected by instrumental transmission effects. The study identified a need for more consistency in instrumental transmission functions and relative sensitivity factors since this contributed a variability of 33%. The results from the LEIS participants were more consistent, with variability of less than 10% in thickness, and this is mostly due to a common method of data analysis. The calculation was performed using a model developed for uniform, flat films, and some participants employed a correction factor to account for the sample geometry, which appears warranted based upon a simulation of LEIS data from one of the participants and comparison to the XPS results. KW - VAMAS KW - Interlaboratory Study KW - Nanoparticle coating KW - XPS KW - LEIS KW - shell thicknss and chemistry PY - 2016 UR - http://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.6b06713 DO - https://doi.org/10.1021/acs.jpcc.6b06713 IS - 120 SP - 24070 EP - 24079 PB - ACS Publications AN - OPUS4-38428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhiem, S. A1 - Barthel, Anne-Kathrin A1 - Meyer-Plath, A. A1 - Hennig, M. P. A1 - Wachtendorf, Volker A1 - Sturm, Heinz A1 - Schäffer, A. A1 - Maes, H. M. T1 - Release of 14C-labelled carbon nanotubes from polycarbonate composites N2 - Waste disposal of carbon nanotube (CNT) containing products is expected to be the most important pathway for release of CNTs into the environment. In the present work, the use of radiolabelled CNTs (14C-CNT) for polycarbonate polymer nanocomposites with 1 wt% 14C-CNT content allowed for the first time to quantify and differentiate the CNT release according to the type of impact along the materials' ageing history. After an initial exposure of the nanocomposite by solar-like irradiation, further environmental impacts were applied to composite material. They aimed at mimicking disposal site conditions that may induce further ageing effects and CNT release. This study included shaking in water, rapid temperature changes, soaking in humic acid solution as well as waste water effluent, and, finally, gentle mechanical abrasion. All ageing impacts were applied sequentially, both on pristine (control) and on solar-irradiated nanocomposites. All experiments were accompanied by absolute quantification of radioactive release as well as chemical and morphological analyses of the nanocomposite surfaces using infra-red (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The morphological analysis showed that spectral irradiation can uncover CNT networks on the outer nanocomposite surface layers by polymer degradation. After having subjected the solar-irradiated nanocomposite to all studied disposal site effect, the total radioactive release was quantified to amount to 64 mg CNT/m2, whereas only 0.8 mg CNT/m2 were found for the un-irradiated control sample. Solar degradation of polymers was thus found to significantly increase the propensity of the studied polymer nanocomposites to release CNTs during ageing effects at the product's end-of-life typical for disposal sites. KW - Weathering KW - Carbon nanotubes KW - Nanocomposites KW - Release KW - Quantification PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0269749116303748 DO - https://doi.org/10.1016/j.envpol.2016.04.098 SN - 0269-7491 VL - 215 IS - August SP - 356 EP - 365 PB - Elsevier Ltd. CY - Paris AN - OPUS4-36899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröter, Maria-Astrid A1 - Ritter, M. A1 - Holschneider, M. A1 - Sturm, Heinz T1 - Enhanced DySEM imaging of cantilever motion using artificial structures patterned by focused ion beam techniques N2 - We use a dynamic scanning electron microscope (DySEM) to map the spatial distribution of the vibration of a cantilever beam. The DySEM measurements are based on variations of the local secondary electron signal within the imaging electron beam diameter during an oscillation period of the cantilever. For this reason, the surface of a cantilever without topography or material variation does not allow any conclusions about the spatial distribution of vibration due to a lack of dynamic contrast. In order to overcome this limitation, artificial structures were added at defined positions on the cantilever surface using focused ion beam lithography patterning. The DySEM signal of such high-contrast structures is strongly improved, hence information about the surface vibration becomes accessible. Simulations of images of the vibrating cantilever have also been performed. The results of the simulation are in good agreement with the experimental images. KW - FIB patterning KW - Structured cantilever KW - AFM KW - Modal analysis KW - DySEM PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-354510 DO - https://doi.org/doi:10.1088/0960-1317/26/3/035010 VL - 26 IS - 3 SP - 035010-1 EP - 035010-7 AN - OPUS4-35451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Lorenz, Edelgard A1 - Weimann, Christiane A1 - Sturm, Heinz A1 - Karimov, I. A1 - Ettl, J. A1 - Meier, R. A1 - Wohlgemuth, W. A. A1 - Berger, H. A1 - Wildgruber, M. T1 - Mechanic and surface properties of central-venous port catheters after removal: A comparison of polyurethane and Silicon rubber materials N2 - Central venous port devices made of two different polymeric materials, thermoplastic polyurethane (TPU)and silicone rubber (SiR), were compared due their material properties. Both naïve catheters as well as catheters after removal from patients were investigated. In lab experiments the influence of various chemo-therapeutic solutions on material properties was investigated, where as the samples after removal were compared according to the implanted time inpatient. The macroscopic,mechanical performance was assessed with dynamic, specially adapted tests for elasticity. The degradation status of the materials was determined with common tools of polymer characterisation, such as infrared spectroscopy, molecular weight measurements and various methods of thermal analysis. The surface morphology was an alysed using scanning electron microscopy. A correlation between material properties and clinical performance was proposed. The surface morphology and chemical composition of the polyurethane catheter materials can potentially result in increased susceptibility of the catheter to bloodstream infections and thrombotic complications. The higher mechanic failure,especially with increasing implantation time of the silicone catheters is related to the lower mechanical performance compared to the polyurethane material as well as loss of barium sulphate filler particles near the surface of the catheter. This results in preformed microscopic notches, which act as predetermined sites of fracture. KW - Thermoplastic polyurethane (TPU) KW - Silicone rubber (SiR) KW - Catheters KW - Central venous access port KW - Complication KW - Structure propertyrelationship KW - Mechanical testing PY - 2016 DO - https://doi.org/10.1016/j.jmbbm.2016.08.002 SN - 1751-6161 SN - 1878-0180 VL - 64 SP - 281 EP - 291 PB - Elsevier Ltd. AN - OPUS4-37178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -