TY - CONF A1 - Andrade, M. A. B. A1 - Stindt, Arne A1 - Panne, Ulrich A1 - Riedel, Jens A1 - Adamowski, J. C. T1 - Numerical and experimental determination of the sound pressure distribution in single-axis acoustic levitators T2 - IUS 2012 - IEEE International Ultrasonics Symposium (Proceedings) N2 - This paper presents a numerical and an experimental procedure to obtain the pressure field in single-axis acoustic levitators. Numerically, the pressure field is determined by a matrix method based on the Rayleigh integral that take into account the multiple wave reflections that occur between the transducer and the reflector. The numerical pressure field is compared with the acoustic pressure measured by an earplug microphone, that is connected to a hollow needle. The tip of the needle is moved by a µm translation stage through the field and the signal is recorded using a lock-in amplifier locked to the levitator frequency. The pressure field obtained numerically show good agreement with that obtained experimentally. T2 - 2012 IEEE International Ultrasonics Symposium (IUS) CY - Dresden, Germany DA - 2012-10-07 KW - Acoustic levitation KW - Matrix method KW - Pressure field PY - 2012 SN - 978-1-4673-4562-0 DO - https://doi.org/10.1109/ULTSYM.2012.0690 SN - 1948-5719 SP - 2754 EP - 2757 AN - OPUS4-32587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stindt, Arne A1 - Andrade, M. A. B. A1 - Buurman, Merwe A1 - Adamowski, J. C. A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Experimental and numerical characterization of the sound pressure in standing wave acoustic levitators JF - Review of scientific instruments N2 - A novel method for predictions of the sound pressure distribution in acoustic levitators is based on a matrix representation of the Rayleigh integral. This method allows for a fast calculation of the acoustic field within the resonator. To make sure that the underlying assumptions and simplifications are justified, this approach was tested by a direct comparison to experimental data. The experimental sound pressure distributions were recorded by high spatially resolved frequency selective microphone scanning. To emphasize the general applicability of the two approaches, the comparative studies were conducted for four different resonator geometries. In all cases, the results show an excellent agreement, demonstrating the accuracy of the matrix method. KW - Acoustic levitation KW - Matrix calculation KW - Microphony KW - Noncontact ultrasonic transportation KW - Small objects KW - Matrix-method KW - Droplets KW - Air KW - Manipulation KW - Simulation KW - Fields KW - Water PY - 2014 DO - https://doi.org/10.1063/1.4861197 SN - 0034-6748 SN - 1089-7623 N1 - Geburtsname von Buurman, Merwe: Albrecht, M. - Birth name of Buurman, Merwe: Albrecht, M. VL - 85 IS - 015110 SP - 1 EP - 6 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-30405 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -