TY - JOUR A1 - Krause, Benjamin Christoph A1 - Seifert, Stephan A1 - Panne, Ulrich A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Matrix-assisted laser desorption/ionization mass spectrometric investigation of pollen and their classification by multivariate statistics N2 - RATIONALE A fast and reliable online identification of pollen is not yet available. The identification of pollen is based mainly on the evaluation of morphological data obtained by microscopic methods. METHODS Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) was applied to the analysis of extracts and milled pollen samples. The obtained MALDI data were explored for characteristic peak patterns which could be subjected to a multivariate statistical analysis. RESULTS Two sample preparation methods are presented, which require only minimal or no chemical extraction of the pollen. MALDI pollen spectra could be recorded showing various peak patterns. A multivariate statistics approach allowed the classification of pollen into clusters indicating similarities and differences between various species. CONCLUSIONS These results demonstrate the potential and the reliability of MALDI-TOF MS for the identification and, in combination with multivariate statistics, also for the classification of pollen. KW - MALDI TOF mass spectrometry KW - Pollen KW - Multivariate statistics PY - 2012 U6 - https://doi.org/10.1002/rcm.6202 SN - 0951-4198 SN - 1097-0231 VL - 26 IS - 9 SP - 1032 EP - 1038 PB - Wiley CY - Chichester AN - OPUS4-25648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, Daniela A1 - Zeise, Ingrid A1 - Traub, Heike A1 - Guttmann, P. A1 - Seifert, Stephan A1 - Büchner, Tina A1 - Jakubowski, Norbert A1 - Schneider, G. A1 - Kneipp, Janina T1 - In situ characterization of SiO2 nanoparticle biointeractions using BrightSilica N2 - By adding a gold core to silica nanoparticles (BrightSilica), silica-like nanoparticles are generated that, unlike unmodified silica nanoparticles, provide three types of complementary information to investigate the silica nano-biointeraction inside eukaryotic cells in situ. Firstly, organic molecules in proximity of and penetrating into the silica shell in live cells are monitored by surface-enhanced Raman scattering (SERS). The SERS data show interaction of the hybrid silica particles with tyrosine, cysteine and phenylalanine side chains of adsorbed proteins. Composition of the biomolecular corona of BrightSilica nanoparticles differs in fibroblast and macrophage cells. Secondly, quantification of the BrightSilica nanoparticles using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) micromapping indicates a different interaction of silica nanoparticles compared to gold nanoparticles under the same experimental conditions. Thirdly, the metal cores allow the investigation of particle distribution and interaction in the cellular ultrastructure by cryo nanoscale X-ray tomography (cryo-XT). In 3D reconstructions the assumption is confirmed that BrightSilica nanoparticles enter cells by an endocytotic mechanism. The high SERS intensities are explained by the beneficial plasmonic properties due to agglomeration of BrightSilica. The results have implications for the development of multi-modal qualitative and quantitative characterization in comparative nanotoxicology and bionanotechnology. KW - Silica nanoparticles KW - Surface-enhanced Raman scattering KW - X-ray tomography KW - LA-ICP-MS KW - Core–shell structures PY - 2014 U6 - https://doi.org/10.1002/adfm.201304126 SN - 1616-301X SN - 1616-3028 VL - 24 IS - 24 SP - 3765 EP - 3775 PB - Wiley-VCH CY - Weinheim AN - OPUS4-30924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seifert, Stephan A1 - Merk, V. A1 - Kneipp, Janina T1 - Identification of aqueous pollen extracts using surface enhanced Raman scattering (SERS) and pattern recognition methods N2 - Aqueous pollen extracts of varying taxonomic relations were analyzed with surface enhanced Raman scattering (SERS) by using gold nanoparticles in aqueous suspensions as SERS substrate. This enables a selective vibrational characterization of the pollen water soluble fraction (mostly cellular components) devoid of the spectral contributions from the insoluble sporopollenin outer layer. The spectra of the pollen extracts are species-specific, and the chemical fingerprints can be exploited to achieve a classification that can distinguish between different species of the same genus. In the simple experimental procedure, several thousands of spectra per species are generated. Using an artificial neural network (ANN), it is demonstrated that analysis of the intrinsic biochemical information of the pollen cells in the SERS data enables the identification of pollen from different plant species at high accuracy. The ANN extracts the taxonomically-relevant information from the data in spite of high intra-species spectral variation caused by signal fluctuations and preparation specifics. The results show that SERS can be used for the reliable characterization and identification of pollen samples. They have implications for improved investigation of pollen physiology and for allergy warning. KW - Pattern recognition KW - Surface enhanced Raman scattering (SERS) KW - Artificial neural networks (ANN) KW - Multivariate statistics KW - Pollen PY - 2016 U6 - https://doi.org/10.1002/jbio.201500176 VL - 9 IS - 1-2 SP - 181 EP - 189 PB - Wiley VCH AN - OPUS4-38092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Sauerland, V. A1 - Barahona, C. A1 - Weidner, Steffen T1 - Multivariate analysis of MALDI imaging mass spectrometry data of mixtures of single pollen grains N2 - Mixtures of pollen grains of three different species (Corylus avellana, Alnus cordata, and Pinus sylvestris) were investigated by matrixassisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF imaging MS). The amount of pollen grains was reduced stepwise from > 10 to single pollen grains. For sample pretreatment, we modified a previously applied approach, where any additional extraction steps were omitted. Our results show that characteristic pollen MALDI mass spectra can be obtained from a single pollen grain, which is the prerequisite for a reliable pollen classification in practical applications. MALDI imaging of laterally resolved pollen grains provides additional information by reducing the complexity of the MS spectra of mixtures, where frequently peak discrimination is observed. Combined with multivariate statistical analyses, such as principal component analysis (PCA), our approach offers the chance for a fast and reliable identification of individual pollen grains by mass spectrometry. KW - MALDI Imaging MS KW - Pollen grains KW - Multivariate Statistics KW - Hierarchical cluster analysis KW - Principal component analysis PY - 2018 U6 - https://doi.org/10.1007/s13361-018-2036-5 SN - 1044-0305 SN - 1879-1123 VL - 29 IS - 11 SP - 2237 EP - 2247 PB - Springer AN - OPUS4-45607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seifert, Stephan A1 - Weidner, Steffen A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Taxonomic relationship of pollen from MALDI TOF MS data using multivariate statistics N2 - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been suggested as a promising tool for the investigation of pollen, but the usefulness of this approach for classification and identification of pollen species has to be proven by an application to samples of varying taxonomic relations. KW - MALDI mass spectrometry KW - Pollen KW - Multivariate statistics PY - 2015 U6 - https://doi.org/10.1002/rcm.7207 SN - 0951-4198 SN - 1097-0231 VL - 29 SP - 1145 EP - 1154 PB - Wiley CY - Chichester AN - OPUS4-35296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joester, Maike A1 - Seifert, Stephan A1 - Emmerling, Franziska A1 - Kneipp, Janina T1 - Physiological influence of silica on germinating pollen as shown by Raman spectroscopy N2 - The process of silicification in plants and the biochemical effects of silica in plant tissues are largely unknown. To study the molecular changes occurring in growing cells that are exposed to higher than normal concentration of silicic acid, Raman spectra of germinating pollen grains of three species (Pinus nigra, Picea omorika, and Camellia japonica) were analyzed in a multivariate classification approach that takes into account the variation of biochemical composition due to species, plant tissue structure, and germination condition. The results of principal component analyses of the Raman spectra indicate differences in the utilization of stored lipids, a changed mobilization of storage carbohydrates in the pollen grain bodies, and altered composition and/or structure of cellulose of the developing pollen tube cell walls. These biochemical changes vary in the different species. KW - Silica KW - Raman spectroscopy KW - Principal component analysis PY - 2017 U6 - https://doi.org/10.1002/jbio.201600011 SN - 1864-063X SN - 1864-0648 VL - 10 IS - 4 SP - 542 EP - 552 AN - OPUS4-40090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the Preparation of Pollen Grains for MALDI-TOF MS Classification N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry. KW - PCA KW - MALDI-TOF MS KW - Conductive carbon tape KW - Pollen KW - Sample pretreatment PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-392885 UR - http://www.mdpi.com/1422-0067/18/3/543/ SN - 1422-0067 VL - 18 IS - 3 SP - 543 EP - 554 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-39288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the preparation of pollen grains for MALDI-TOF MS classification N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry. KW - MALDI KW - Conductive carbon tape KW - Pollen KW - Sample pretreatment KW - Principal component analysis PY - 2017 U6 - https://doi.org/10.3390/ijms18030543 SN - 1422-0067 SN - 1661-6596 VL - 18 IS - 3 SP - 543-1 EP - 543-11 PB - MDPI AN - OPUS4-41733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, Sabrina A1 - Zimmermann, B. A1 - Bagcioglu, M. A1 - Seifert, Stephan A1 - Kohler, A. A1 - Ohlson, M. A1 - Fjellheim, S. A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows adaption of grass pollen composition N2 - MALDI time-of-flight mass spectrometry (MALDI-TOF MS) has become a widely used tool for the classification of biological samples. The complex chemical composition of pollen grains leads to highly specific, fingerprint-like mass spectra, with respect to the pollen species. Beyond the species-specific composition, the variances in pollen chemistry can be hierarchically structured, including the level of different populations, of environmental conditions or different genotypes. We demonstrate here the sensitivity of MALDI-TOF MS regarding the adaption of the chemical composition of three Poaceae (grass) pollen for different populations of parent plants by analyzing the mass spectra with partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Thereby, variances in species, population and specific growth conditions of the plants were observed simultaneously. In particular, the chemical pattern revealed by the MALDI spectra enabled discrimination of the different populations of one species. Specifically, the role of environmental changes and their effect on the pollen chemistry of three different grass species is discussed. Analysis of the Group formation within the respective populations showed a varying influence of plant genotype on the classification, depending on the species, and permits conclusions regarding the respective rigidity or plasticity towards environmental changes. KW - Pollen KW - MALDI-TOF MS KW - Classification KW - Partial least square discriminant analysis (PLS-DA) KW - Principal component analysis (PCA) PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-465294 SN - 2045-2322 VL - 8 IS - 1 SP - 16591, 1 EP - 11 PB - Nature AN - OPUS4-46529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bagcioglu, M. A1 - Kohler, A. A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Zimmermann, B. T1 - Monitoring of plant-environment interactions by high-throughput FTIR spectroscopy of pollen N2 - 1. Fourier transform infrar ed (FTIR) spectroscopy enables chemical analysis of pollen samples for plant phenotyping to stud y plant–environment interactions, such as influence of climate change or pathogens. However, current approach, such as microspectrosc opy and attenuated total refle ction spectrosco py, doe s not allow fo r high-throughput protocols. This st udy at hand suggests a new sp ectroscopic method for high-throughp ut characterization of pollen. 2. Samples were measured as thin films of pollen fragments using a Bruker FTIR spe ctrometer with a high-throughput eXTension (HTS-XT) unit employing 384-well plates. In total, 146 pollen samples, belonging to 31 different pollen species of Fagaceae and Betulaceae and collected during three consecutive years (2012–2014) at locations in Croatia, Germany and Norway, were analysed. Critical steps in the sample preparation and measurement, such as variabilities between technical replicates, between microplates and between spectrometers, were studied. 3. Measurement variations due to sample preparation, microplate holders and instrumentation were low, and thus allowed differentiation of samples with respect to phylogeny and biogeography. The spectral variability for a ran ge of Fagales spec ies (Fagus, Quercus, Betula, Corylus, Alnus and Ostrya) showed high-species-specific differences in pollen’s chemical composition due to eithe r location or year. Statistically significant inter-annual and locational differences in the pollen spectra indicate that pollen chemical composition has high phenotypic plasticity and is influenced by local climate conditions. The variations in composition are connected to lipids, proteins, carbohydrates and sporopollenins that play crucial ro les in cold and desiccation tolerance, protection against UV radiation and as material and energy reserves. 4. The results of this study demonstrate the value of high-throughput FTIR approach for the systematic collection of data on ecosystems. The novel FTIR approach offers fast, reliable and economical screening of large number of samples by semi-automated methodology. The high-throughput approach could provide crucial understanding on plant–climate interactions with respect to biochemical variation within genera, species and populations. KW - Ecology and environmental sciences KW - Infrared spectroscopy KW - Pollen PY - 2017 UR - http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12697/epdf U6 - https://doi.org/10.1111/2041-210X.12697 VL - 8 IS - 7 SP - 870 EP - 880 PB - British Ecological Society CY - London, UK AN - OPUS4-41540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -