TY - JOUR A1 - Mino, L. A1 - Pellegrino, F. A1 - Rades, Steffi A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Spotto, G. A1 - Maurino, V. A1 - Martra, G. T1 - Beyond shape engineering of TiO2 nanoparticles: Post-synthesis treatment dependence of surface hydration, hydroxylation, Lewis acidity and photocatalytic activity of TiO2 anatase nanoparticles with dominant {001} or {101} facets N2 - TiO2 anatase nanoparticles are among the relevant players in the field of light-responsive semiconductor nanomaterials used to face environmental and energy issues. In particular, shape-engineered TiO2 anatase nanosheets with dominant {001} basal facets gained momentum because of the possibility to exploit different and/or improved functional behaviors with respect to usual bipyramidal TiO2 anatase nanoparticles, mainly exposing {101} facets. Nevertheless, such behavior depends in a significant extent on the physicochemical features of surfaces exposed by nanosheets. They can vary in dependence on the presence or removal degree of capping agents, namely, fluorides, used for shape-engineering, and experimental investigations in this respect are still a few. Here we report on the evolution of interfacial/ surface features of TiO2 anatase nanosheets with dominant {001} facets from pristine nanoparticles fluorinated both in the bulk and at their surface to nanoparticles with F− free surfaces by treatment in a basic solution and to totally F− free nanoparticles by calcination at 873 K. The nanoparticles fluorine content and its subsequent evolution is determined by complementary techniques (ion chromatography, TOF-SIMS, XPS, AES, SEM-EDX), probing different depths. In parallel, the evolution of the electronic properties and the Ti valence state is monitored by UV−vis spectroscopy and XPS. The calcination treatment results in {001} facets poorly hydroxylated, hydrated, and hydrophilic, which appear as surface features consequent to the expected (1 × 4) reconstruction. Moreover, IR spectroscopy of CO adsorbed as probe molecule indicates that the Lewis acidity of Ti4+ sites exposed on (1 × 4) reconstructed {001} facets of calcined TiO2 nanosheets is weaker than that of cationic centers on {101} facets of bipyramidal TiO2 anatase nanoparticles. The samples have also been tested in phenol photodegradation highlighting that differences in surface hydration, hydroxylation, and Lewis acidity between TiO2 nanoparticles with nanosheet (freed by F− by calcination at 873 K) and bipyramidal shape have a strong impact on the photocatalytic activity that is found to be quite limited for the nanoparticles mainly exposing (1 × 4) reconstructed {001} facets. KW - Nanoparticles KW - TiO2 KW - F- doping KW - Shape-controlled nanoparticles KW - Nanosheets PY - 2018 DO - https://doi.org/10.1021/acsanm.8b01477 SN - 2574-0970 VL - 1 IS - 9 SP - 5355 EP - 5365 PB - ACS Publications CY - Washington, DC, U.S.A. AN - OPUS4-46157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rades, Steffi A1 - Oswald, F. A1 - Narbey, S. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Analytical approach for characterization of morphology and chemistry of a CH3NH3PbI3/TiO2 solar cell layered system N2 - Manufacturing of new perovskite layered solar cells with constant high light conversion Efficiency over time may be hampered by the loss of efficiency caused by structural and/or chemical alterations of the complex layered system. SEM/EDX combined with XPS were chosen as an appropriate methodical approach to characterize perovskite laboratory cells in depth and at surface, before and after light exposure. The layered perovskite system investigated here is based on glass covered with fluorine doped tin oxide, followed by thin films of TiO2, ZrO2, and a thick monolithic carbon. TiO2 film is subdivided into a dense layer covered by porous one constituted of nanoparticles of truncated bipyramidal shape. This layered system serves as the matrix for the perovskite. EDX spectral maps on cross sections of specimen have shown that Pb and I are distributed homogeneously throughout the porous layers C, ZrO2, and TiO2. SEM/EDX data show that 20 weeks of ambient daylight did not change significantly the in‐depth distribution of the elemental composition of Pb and I throughout the entire solar cell system. It was confirmed with EDX that nanoparticles identified in high‐resolution SEM micrographs contain mainly Pb and I, indicating these to be the perovskite crystals. However, a compositional and chemical altering began in the near‐surface region of the outermost ~10 nm after 2 months of illumination which was observed with XPS. T2 - ECASIA 2017 CY - Montpellier, France DA - 24.09.2017 KW - Solar Cell KW - SEM KW - EDX KW - XPS KW - layered system PY - 2018 DO - https://doi.org/10.1002/sia.6410 SN - 0142-2421 SN - 1096-9918 VL - 50 IS - 11 SP - 1234 EP - 1238 PB - John Wiley & Sons, Ltd. AN - OPUS4-46394 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rades, Steffi A1 - Oswald, F. A1 - Narbey, S. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan T1 - Complementary methodical approach for the analysis of a perovskite solar cell layered system N2 - Loss in efficiency of perovskite solar cells may be caused by structural and/or chemical alterations of the complex layered system. SEM/EDX combined with XPS were chosen as appropriate methodical approach to characterise perovskite laboratory cells in depth and complementary on top, before and after light exposure. The layered perovskite system investigated here is based on glass covered with fluorine doped tin oxide (FTO), followed by three porous thin films of TiO2, ZrO2 and a thick monolithic carbon. This layered system serves as the matrix for the perovskite. After infiltration of perovskite solution and annealing, EDX spectral maps on cross-sections of the specimen have been measured. The distribution of relevant elements – Si, Sn, Ti, Zr and C – correlates conclusively with layers visible in the acquired SEM images. Lead and iodine are distributed throughout the porous layers C, ZrO2 and TiO2. By EDX it was found that several weeks of ambient daylight did not change significantly the qualitative elemental composition of lead and iodine throughout the solar cell system. It was confirmed with EDX that nanoparticles identified in high-resolution SEM micrographs contain mainly Pb and I, indicating these to be the perovskite crystals. However, a time-dependent compositional and chemical altering was observed with XPS for the near-surface region of the outermost ~10 nm after two months of illumination. KW - Pervskite solar cells KW - TiO2 KW - Porous layer KW - SEM/EDX KW - XPS PY - 2017 UR - https://www.cambridge.org/core/services/aop-cambridge-core/content/view/0E9E937542BC8B5535900B53B7F667E9/S1431927617010558a.pdf/complementary_methodical_approach_for_the_analysis_of_a_perovskite_solar_cell_layered_system.pdf DO - https://doi.org/10.1017/S1431927617010558 VL - 23 IS - S1 (July) SP - 1978 EP - 1979 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-41925 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sötebier, Carina A1 - Bierkandt, Frank A1 - Rades, Steffi A1 - Jakubowski, Norbert A1 - Panne, Ulrich A1 - Weidner, Steffen T1 - Sample loss in asymmetric flow field-flow fractionation coupled to inductively coupled plasma-mass spectrometry of silver nanoparticles N2 - In this work, sample losses of silver nanoparticles (Ag NPs) in asymmetrical flow field-flow fractionation (AF4) have been systematically investigated with the main focus on instrumental conditions like focusing and cross-flow parameters as well as sample concentration and buffer composition. Special attention was drawn to the AF4 membrane. For monitoring possible silver depositions on the membrane, imaging laser ablation coupled to inductively coupled plasma mass spectrometry (LA-ICP-MS) was used. Our results show that the sample residue on the membrane was below 0.6% of the total injected amount and therefore could be almost completely avoided at low sample concentrations and optimized conditions. By investigation of the AF4 flows using inductively coupled plasma mass spectrometry (ICP-MS), we found the recovery rate in the detector flow under optimized conditions to be nearly 90%, while the cross-flow, slot-outlet flow and purge flow showed negligible amounts of under 0.5%. The analysis of an aqueous ionic Ag standard solution resulted in recovery rates of over 6% and the ionic Ag content in the sample was found to be nearly 8%. Therefore, we were able to indicate the ionic Ag content as the most important source of sample loss in this study. KW - Asymmetric flow filed-flow fractionation KW - ICP-MS KW - Nanoparticles KW - Sample loss KW - Quantification PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-336171 DO - https://doi.org/10.1039/c5ja00297d SN - 0267-9477 SN - 1364-5544 VL - 30 IS - 10 SP - 2214 EP - 2222 PB - Royal Society of Chemistry CY - London AN - OPUS4-33617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -