TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Morphology and structure of TixOy nanoparticles generated by femtosecond laser ablation in water N2 - In this work femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated byXRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Titanium oxide KW - Nanoparticles KW - Laser ablation in liquid KW - Particle morphology KW - Nanoparticle structure PY - 2018 U6 - https://doi.org/10.1088/2053-1591/aaba56 SN - 2053-1591 VL - 5 IS - 4 SP - 045015-1 EP - 045015-12 PB - IOP Publishing CY - London, UK AN - OPUS4-44678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donėlienė, J. A1 - Rudzikas, M. A1 - Rades, Steffi A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Sahre, Mario A1 - Pellegrino, F. A1 - Maurino, V. A1 - Ulbikas, J. A1 - Galdikas, A. A1 - Hodoroaba, Vasile-Dan T1 - Electron Microscopy and X-Ray Diffraction Analysis of Titanium Oxide Nanoparticles Synthesized by Pulsed Laser Ablation in Liquid N2 - A femto-second pulsed laser ablation in liquid (PLAL) procedure for the generation of titanium oxide nanoparticles (NP) is reported with the purpose of understanding morphology and structure of the newly generated NPs. Ablation duration was varied for optimization of NP generation processes between 10 and 90 min. Surface morphology of NPs as well as their size and shape (distribution) were analysed by various complementary electron microscopy techniques, i.e. SEM, TSEM and TEM. The crystalline structure of titanium oxide particles was investigated by XRD(two instruments operated in different geometries) and HR-TEM. Concentration of generated titanium oxide NPs in liquid was analysed by ICP-MS. A mix of crystalline (mainly anatase), partly crystalline and amorphous spherical titanium oxide NPs can be reported having a mean size between 10 and 20 nm, which is rather independent of the laser ablation (LA) duration. A second component consisting of irregularly shaped, but crystalline titanium oxide nanostructures is co-generated in the LA water, with more pronounced occurrence at longer LA times. The provenance of this component is assigned to those spherical particles generated in suspension and passing through the converging laser beam, being hence subject to secondary irradiation effects, e. g. fragmentation. KW - Laser ablation in liquid KW - Nanoparticles KW - Titanium oxide KW - Particle morphology PY - 2018 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/electron-microscopy-and-xray-diffraction-analysis-of-titanium-oxide-nanoparticles-synthesized-by-pulsed-laser-ablation-in-liquid/AE368446FAC70E08C514F9AEABFD131B U6 - https://doi.org/10.1017/S1431927618009030 VL - 24 IS - S1 (August) SP - 1710 EP - 1711 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-45949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mino, L. A1 - Pellegrino, F. A1 - Rades, Steffi A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Spotto, G. A1 - Maurino, V. A1 - Martra, G. T1 - Beyond shape engineering of TiO2 nanoparticles: Post-synthesis treatment dependence of surface hydration, hydroxylation, Lewis acidity and photocatalytic activity of TiO2 anatase nanoparticles with dominant {001} or {101} facets N2 - TiO2 anatase nanoparticles are among the relevant players in the field of light-responsive semiconductor nanomaterials used to face environmental and energy issues. In particular, shape-engineered TiO2 anatase nanosheets with dominant {001} basal facets gained momentum because of the possibility to exploit different and/or improved functional behaviors with respect to usual bipyramidal TiO2 anatase nanoparticles, mainly exposing {101} facets. Nevertheless, such behavior depends in a significant extent on the physicochemical features of surfaces exposed by nanosheets. They can vary in dependence on the presence or removal degree of capping agents, namely, fluorides, used for shape-engineering, and experimental investigations in this respect are still a few. Here we report on the evolution of interfacial/ surface features of TiO2 anatase nanosheets with dominant {001} facets from pristine nanoparticles fluorinated both in the bulk and at their surface to nanoparticles with F− free surfaces by treatment in a basic solution and to totally F− free nanoparticles by calcination at 873 K. The nanoparticles fluorine content and its subsequent evolution is determined by complementary techniques (ion chromatography, TOF-SIMS, XPS, AES, SEM-EDX), probing different depths. In parallel, the evolution of the electronic properties and the Ti valence state is monitored by UV−vis spectroscopy and XPS. The calcination treatment results in {001} facets poorly hydroxylated, hydrated, and hydrophilic, which appear as surface features consequent to the expected (1 × 4) reconstruction. Moreover, IR spectroscopy of CO adsorbed as probe molecule indicates that the Lewis acidity of Ti4+ sites exposed on (1 × 4) reconstructed {001} facets of calcined TiO2 nanosheets is weaker than that of cationic centers on {101} facets of bipyramidal TiO2 anatase nanoparticles. The samples have also been tested in phenol photodegradation highlighting that differences in surface hydration, hydroxylation, and Lewis acidity between TiO2 nanoparticles with nanosheet (freed by F− by calcination at 873 K) and bipyramidal shape have a strong impact on the photocatalytic activity that is found to be quite limited for the nanoparticles mainly exposing (1 × 4) reconstructed {001} facets. KW - Nanoparticles KW - TiO2 KW - F- doping KW - Shape-controlled nanoparticles KW - Nanosheets PY - 2018 U6 - https://doi.org/10.1021/acsanm.8b01477 SN - 2574-0970 VL - 1 IS - 9 SP - 5355 EP - 5365 PB - ACS Publications CY - Washington, DC, U.S.A. AN - OPUS4-46157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rades, Steffi A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Holzweber, Markus A1 - Pellegrino, F. A1 - Martra, G. A1 - Hodoroaba, Vasile-Dan T1 - Analysis of fluorine traces in TiO2 nanoplatelets by SEM/EDX, AES and TOF-SIMS N2 - Hydrothermal synthesis of anatase TiO2 nanosheets with a high fraction of exposed {001} facets and related high photocatalytic activity - as an alternative to bipyramidal anatase TiO2 nanoparticles mainly exposing the {101} facets. The scope of the material preparation work is the thermal reduction of residual fluorides from HF (capping agent) induced during the synthesis of TiO2 nanosheets by calcination at 873K. The analytical task consists of detection and localization of fluorine present at the surface and/or in the bulk of TiO2 nanosheets before and after calcination by SEM/EDX, Auger electron spectroscopy and ToF-SIMS. KW - Fluorine KW - SEM/EDX KW - TiO2 nanoplatelets KW - Auger electron spectroscopy KW - TOF-SIMS PY - 2017 UR - https://www.cambridge.org/core/journals/microscopy-and-microanalysis/article/analysis-of-fluorine-traces-in-tio2-nanoplatelets-by-semedx-aes-and-tofsims/91EA2C0666B7927FCA57D2AD114910F6 U6 - https://doi.org/10.1017/S1431927617010200 SN - 1435-8115 SN - 1431-9276 VL - 23 IS - S1 (July) SP - 1908 EP - 1909 PB - Cambridge University Press CY - New York, NY, U.S.A. AN - OPUS4-42455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -