TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Natte, Kishore A1 - Orts Gil, Guillermo A1 - Unger, Wolfgang T1 - Morphology of nanoparticles - A characterization using high-resolution SEM N2 - Potential candidates of reference nano-materials are manufactured and systematically characterized in particular with respect to their morphology (shape, size and size distribution) in the frame of the running large European project NanoValid. By exploiting the transmission operation mode in a SEM, known as T-SEM, it is demonstrated by means of three representative examples of nanoparticles how a quick morphological inspection up to a complete, metrological characterization is feasible. KW - Nanoparticles KW - SEM KW - TEM KW - T-SEM KW - NanoValid PY - 2013 SN - 1439-4243 SN - 1863-7809 VL - 15 IS - 1 SP - 54 EP - 56 PB - GIT-Verl. CY - Darmstadt AN - OPUS4-27925 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rades, Steffi A1 - Hodoroaba, Vasile-Dan A1 - Unger, Wolfgang T1 - Morphological and elemental characterization of engineered nanoparticles by a multi-method approach: T-SEM, EDS and AES T2 - 8th Conference on Environmental Effects of Nanoparticles and Nanomaterials CY - Aix-en-Provence, France DA - 2013-07-03 PY - 2013 AN - OPUS4-29553 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rades, Steffi A1 - Wirth, Thomas A1 - Unger, Wolfgang T1 - Investigation of Nanoparticles by Auger electron spectroscopy (AES) T2 - 15th European Conference on Applications of Surface and Interface Analysis (ECASIA 13) CY - Cagliari, Italy DA - 2013-10-13 PY - 2013 AN - OPUS4-30131 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rades, Steffi A1 - Salge, T. A1 - Schmidt, R. A1 - Hodoroaba, Vasile-Dan T1 - Need for large-area EDS detectors for imaging nanoparticles in a SEM operating in transmission mode KW - EDS KW - EDX KW - Nanoparticles KW - High-resolution KW - SEM KW - T-SEM KW - Large-area EDS PY - 2014 DO - https://doi.org/10.1017/S1431927614005030 SN - 1431-9276 SN - 1435-8115 VL - 20 IS - Suppl. S 3 SP - 662 EP - 663 PB - Cambridge University Press CY - New York, NY AN - OPUS4-31389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Salge, T. A1 - Terborg, R. A1 - Ball, A. D. A1 - Broad, G.R. A1 - Kearsley, A.T. A1 - Jones, C.G. A1 - Smith, C. A1 - Rades, Steffi A1 - Hodoroaba, Vasile-Dan ED - Hozak, P. T1 - Advanced SEM/EDS analysis using an annular silicon drift detector (SDD): Applications in nano, life, earth and planetary sciences below micrometer scale T2 - IMC 2014 - 18th International microscopy congress CY - Prague, Czech Republic DA - 2014-09-07 PY - 2014 SN - 978-80-260-6720-7 SP - IT-5-P-1842, 1-2 AN - OPUS4-31944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Unger, Wolfgang T1 - Inspection of morphology and elemental imaging of single nanoparticles by high-resolution SEM/EDX in transmission mode N2 - In the frame of the European project NanoValid, potential candidates of reference nanomaterials are manufactured and systematically characterized in particular with respect to their morphology (shape, size and size distribution). In this study, by exploiting the transmission operation mode in a high-resolution SEM, known as transmission SEM, the potential of this methodical approach is demonstrated by means of representative examples of nanoparticles. The method enables quick and accurate morphological inspection and systematic characterization. Energy dispersive X-ray spectroscopy imaging of single nanoparticles by using the transmission mode is demonstrated as feasible, too. KW - Single nanoparticles KW - SEM KW - TEM KW - T-SEM KW - EDX KW - Imaging KW - Transmission KW - NanoValid KW - Scanning electron microscopy (SEM) KW - High-resolution KW - Transmission in SEM KW - Energy dispersive KW - X-ray spectroscopy KW - Nanoparticles KW - Characterization PY - 2014 DO - https://doi.org/10.1002/sia.5426 SN - 0142-2421 SN - 1096-9918 VL - 46 IS - 10-11 SP - 945 EP - 948 PB - Wiley CY - Chichester AN - OPUS4-31577 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rades, Steffi A1 - Wirth, Thomas A1 - Unger, Wolfgang T1 - Investigation of silica nanoparticles by Auger electron spectroscopy (AES) N2 - High-priority industrial nanomaterials like SiO2, TiO2, and Ag are being characterized on a systematic basis within the framework of the EU FP7 research project NanoValid. Silica nanoparticles from an industrial source have been analyzed by Auger electron spectroscopy. Point, line, and map spectra were collected. Material specific and methodological aspects causing the special course of Auger line scan signals will be discussed. KW - Nanoparticles KW - Auger electron spectroscopy KW - Surface analysis PY - 2014 DO - https://doi.org/10.1002/sia.5378 SN - 0142-2421 SN - 1096-9918 VL - 46 IS - 10-11 SP - 952 EP - 956 PB - Wiley CY - Chichester AN - OPUS4-31604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rades, Steffi A1 - Hodoroaba, Vasile-Dan A1 - Salge, T. A1 - Wirth, Thomas A1 - Lobera, M.P. A1 - Labrador, R.H. A1 - Natte, Kishore A1 - Behnke, Thomas A1 - Gross, Thomas A1 - Unger, Wolfgang T1 - High-resolution imaging with SEM/T-SEM, EDX and SAM as a combined methodical approach for morphological and elemental analyses of single engineered nanoparticles N2 - The combination of complementary characterization techniques such as SEM (Scanning Electron Microscopy), T-SEM (Scanning Electron Microscopy in Transmission Mode), EDX (Energy Dispersive X-ray Spectroscopy) and SAM (Scanning Auger Microscopy) has been proven to be a powerful and relatively quick characterization strategy for comprehensive morphological and chemical characterization of individual silica and titania nanoparticles. The selected “real life” test materials, silica and titania, are listed in the OECD guidance manual as representative examples because they are often used as commercial nanomaterials. Imaging by high resolution SEM and in the transmission mode by T-SEM allows almost simultaneous surface and in-depth inspection of the same particle using the same instrument. EDX and SAM enable the chemical characterization of bulk and surface of individual nanoparticles. The core–shell properties of silica based materials are addressed as well. Titania nominally coated by silane purchased from an industrial source has been found to be inhomogeneous in terms of chemical composition. KW - surface and in-depth inspection KW - silica nanoparticles KW - titania nanoparticles PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-316296 DO - https://doi.org/10.1039/c4ra05092d SN - 2046-2069 VL - 4 IS - 91 SP - 49577 EP - 49587 PB - RSC Publishing CY - London AN - OPUS4-31629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Kalbe, Henryk A1 - Rades, Steffi T1 - Determining shell thicknesses in stabilised CdSe@ZnS core-shell nanoparticles by quantitative XPS analysis using an infinitesimal columns model N2 - A novel Infinitesimal Columns (IC) simulation model is introduced in this study for the quantitativeanalysis of core-shell nanoparticles (CSNP) by means of XPS, which combines the advantages of exist-ing approaches. The IC model is applied to stabilised Lumidot™CdSe/ZnS 610 CSNP for an extensiveinvestigation of their internal structure, i.e. calculation of the two shell thicknesses (ZnS and stabiliser)and exploration of deviations from the idealised CSNP composition. The observed discrepancies betweendifferent model calculations can be attributed to the presence of excess stabiliser as well as synthesisresidues, demonstrating the necessity of sophisticated purification methods. An excellent agreement isfound in the comparison of the IC model with established models from the existing literature, the Shardmodel and the software SESSA. KW - XPS KW - Quantum dot KW - Core shell nano particle PY - 2016 DO - https://doi.org/10.1016/j.elspec.2016.08.002 SN - 0368-2048 VL - 212 SP - 34 EP - 43 PB - Elsevier B.V. AN - OPUS4-38273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rades, Steffi A1 - Ortel, Erik A1 - Wirth, Thomas A1 - Garcia, Sarai A1 - Gomez, Estibaliz A1 - Blanco, Miren A1 - Alberto, Gabriele A1 - Martra, Gianmario A1 - Hodoroaba, Vasile-Dan T1 - Analysis of functionalization of TiO2 nanoparticles and various substrates by means of SEM-EDX, AES and ToF-SIMS N2 - The physico-chemical characteristics of TiO2 coatings can greatly influence their final performance. In SETNanoMetro, different deposition procedures are being set for applying films of TiO2 NPs with defined and homogenous thickness on supports of interest for the applications studied in the project. The selected substrates are the following: (i) Silica glasses for photocatalytic measurements, (ii) Ti-alloys for orthopedic and/or dental prostheses, and for cell cultures, and (iii) Conductive glasses (e.g. Fluorine doped Tin Oxide, FTO) for dye-sensitized solar cells. From the different film deposition procedures studied within the project Self-assembly of TiO2 NPs in multiple layers was selected. For this, surface modification of the substrate and of TiO2 nanoparticles (NPs) with e.g. silane coupling agents is a prerequisite. First attempts to prepare the self-assembled coating on the functionalized glass substrates seem to indicate that the functionalized NPs adhere to the substrates, even if the final coatings were not homogenous and presented agglomerates. ToF-SIMS results support this outcome. In order to use the layer-by-layer deposition technique for the formation of TiO2 films by controlled self-assembly of the TiO2 NPs, the proper complementary moieties for the functionalization of the NPs were chosen. A first set of NPs has been produced by reaction with (3-aminopropyl)phosphonic acid (APPA) in order to functionalize the surface with free amino-groups. Then, the complementary NP set can be obtained from an aliquot of the first one, through the conversion of free surface amino-groups to aldehydes by reaction with glutaraldehyde. A proper approach for the functionalization of two types of TiO2, commercial P25 (Evonik) and SETNanoMetro-sample labelled UT001, with APPA was developed. A second set of NPs consisting of three types of TiO2 NPs, P25 and SETNanoMetro NPs (TiO2 NPs with high specific surface area > 150 m2/g and TiO2 NPs with low size < 20 nm) was functionalized with (3-aminopropyl)triethoxysilane (APTS). As for the previous set of NPs, the complementary NP set was obtained through the conversion of free surface amino-groups to aldehydes by reaction with glutaraldehyde. EDX, AES and ToF-SIMS spectra were collected and analyzed to demonstrate the presence of the surface functionalization of the different types of TiO2 NPs. T2 - Nanoscience meets Metrology - Synthesis, Characterization, Testing and Applications of Validated Nanoparticles - International Summer School CY - Turin, Italy DA - 04.09.2016 KW - Time-of-flight secondary-ion mass spectrometry KW - X-ray spectroscopy KW - Auger electron spectroscopy KW - Electron microscopy KW - Nanoparticles KW - Thin films PY - 2016 UR - http://www.setnanometro.eu/events/ AN - OPUS4-38064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -