TY - CONF A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Wille, Frank T1 - Mechanical and thermal assessment by BAM of a new package design for the transport of SNF from a german research reactor T2 - Pressure Vessels Piping Conference N2 - For disposal of the research reactor of the Technical University Munich FRM II a new transport and storage cask design was under approval assessment by the German authorities on the basis of International Atomic Energy Agency (IAEA) requirements. The cask body is made of ductile cast iron and closed by two bolted lid systems with metal seals. The material of the lids is stainless steel. On each end of the cask the wood-filled impact limiters are installed to reduce impact loads to the cask under drop test conditions. In the cavity of the cask a basket for five spent fuel elements is arranged. This design has been assessed by the Bundesanstalt für Materialforschung und -prüfung (BAM) in view to the mechanical and thermal safety analyses, the activity release approaches, and subjects of quality assurance and surveillance for manufacturing and operation of the package. For the mechanical safety analyses of the package a combination of experimental testing and analytical/numerical calculations were applied. In total, four drop tests were carried out at the BAM large drop test facility. Two tests were carried out as a full IAEA drop test sequence consisting of a 9m drop test onto an unyielding target and a 1m puncture bar drop test. The other two drop tests were performed as single 9m drop tests and completed by additional analyses for considering the effects of an IAEA drop test sequence. The main objectives of the drop tests were the investigation of the integrity of the package and its safety against release of radioactive material as well as the test of the fastening system of the impact limiters. Furthermore, the acceleration and strain signals measured during the tests were used for the verification of finite-element (FE) models applied in the safety analysis of the package design. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Mechanik KW - radioaktives Material KW - Transportbehälter KW - Antragsverfahren KW - Zulassungen KW - Typ-B Versandstück KW - Thermik PY - 2020 VL - 2020 SP - 1 EP - 7 PB - ASME CY - New York AN - OPUS4-51103 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Neumann, Martin A1 - Wille, Frank T1 - Transportbehälter für Klasse 7 - Ein Überblick N2 - Die Präsentation gibt einen Überblick über die Tranportbehälter der Klasse 7. Behandelt werden neben der Versandstückklassifikation auch die Anforderungen an diese Verpackungen gemäß der gefahrgutrechtlichen Vorschriften. T2 - 30. Münchner Gefahrguttage CY - Online meeting DA - 20.07.2020 KW - Gefahrgutrecht KW - Transportbehälter KW - Radioaktives Material KW - Zulassungspflichtige Versandstücke PY - 2020 AN - OPUS4-51104 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rolle, Annette A1 - Komann, Steffen A1 - Wille, Frank ED - Baraldi, P. ED - Di Maio, F. ED - Zio, E. T1 - Ageing aspect in the safety evaluation of special form radioactive material T2 - e-proceedings of the 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL2020 PSAM15) N2 - In accordance with the IAEA transport regulations Special Form Radioactive Material (SFRM) is either an indispersible solid radioactive material or a sealed capsule containing radioactive material. The design of special form radioactive material has to resist a severe transport accident without undue loss or dispersal of radioactive material. The safety assessment for design approval shall include besides the required test program (impact, percussion, bending and heat test) also the evaluation of the management system for design, manufacture, testing, documentation, use, maintenance and inspection. The specified quality assurance measures have to assure, that every specimen of the approved design is produced in the same verified quality and every specimen must be able to survive the severe mechanical and thermal tests at any time of its working life. Due to the long-term use of SFRM the consideration of ageing is an important aspect in the approval procedure by BAM, the competent authority for SFRM approval in Germany. Different fields of application imply a wide range of environmental conditions, from clean room atmosphere to highly aggressive industrial conditions. So, besides of radioactive content, corrosion is a main factor for possible design degradation. This paper will describe major influencing factors to be taken into account to assess the ageing behavior of a SFRM design and will emphasize that there is a need for a regulatory specification of a SFRM-working life as basis for the aging evaluations. T2 - 30th European Safety and Reliability Conference and 15th Probabilistic Safety Assessment and Management Conference (ESREL2020 PSAM15) CY - Online meeting DA - 01.11.2020 KW - Special form radioactive material KW - Transport KW - Ageing KW - Material KW - Safety assessment KW - Management system PY - 2020 UR - https://www.rpsonline.com.sg/proceedings/esrel2020/html/3659.xml SN - 987-981-14-8593-0 SP - Paper 3659,1 EP - 5 PB - Research Publishing CY - Singapore AN - OPUS4-50969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Komann, Steffen A1 - Wille, Frank A1 - Droste, Bernhard T1 - Gap analysis examples from periodical reviews of transport package design safety reports of SNF/HLW dual purpose casks T2 - PSAM 12 - Probabilistic safety assessment and management (Proceedings) N2 - Storage of spent nuclear fuel and high-level waste in dual purpose casks (DPC) is related with the challenge of maintaining safety for transportation over several decades of storage. Beside consideration of aging mechanisms by appropriate design, material selection and operational controls to assure technical reliability by aging management measures, an essential issue is the continuous control and update of the DPC safety case. Not only the technical objects are subject of aging but also the safety demonstration basis is subject of "aging" due to possible changes of regulations, standards and scientific/technical knowledge. The basic document, defining the transport safety conditions, is the package design safety report (PDSR) for the transport version of the DPC. To ensure a safe transport in future to a destination which is not known yet (because of not yet existing repository sites) periodical reviews of the PDSR, in connection with periodic renewals of package design approval certificates, have to be carried out. The main reviewing tool is a gap analysis. A gap analysis for a PDSR is the assessment of the state of technical knowledge, standards and regulations regarding safety functions of structures, systems and components. T2 - PSAM 12 - Probabilistic safety assessment and management CY - Honolulu, Hawaii, USA DA - 22.06.2014 KW - Dual Purpose Casks KW - Aging KW - Transportation KW - Periodical Review PY - 2014 UR - http://psam12.org/proceedings/paper/paper_259_1.pdf SP - Paper 259, 1 EP - 9 AN - OPUS4-32574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Komann, Steffen A1 - Wille, Frank A1 - Droste, Bernhard T1 - Sicherheitstechnische Begutachtung der strukturmechanischen Auslegung von Castor-Behältern T2 - BTU Stahlbau-Symposium 2014 N2 - Die Sicherheitsanforderungen, die an Behälter für den Transport radioaktiver Stoffe auf öffentlichen Verkehrswegen gestellt werden, orientieren sich an dem Gefährdungspotenzial des radioaktiven Inhalts. So müssen für den Transport abgebrannter Brennelemente oder hochradioaktiver Abfalle aus nuklearen Anlagen Behälter eingesetzt werden, die auch schweren Unfällen standhalten. Zu ihnen gehören z. B. die CASTOR®-Behälter (Cask for Storage and Transport of Radioactive Material). T2 - BTU Stahlbau-Symposium 2014 CY - Cottbus, Germany DA - 23.05.2014 PY - 2014 SN - 1611-5023 N1 - Serientitel: Schriftenreihe Stahlbau – Series title: Schriftenreihe Stahlbau IS - 8 SP - 33 EP - 40 AN - OPUS4-31148 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Package testing of a dual purpose cask for SNF from German research reactors T2 - International High-Level Radioactive Waste Management 2019 N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the licensing procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according to the IAEA-Regulations [1]. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a double lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture drop test followed the horizontal drop test to consider an IAEA-test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated to +80°C. The tests were conducted onto an unyielding target, fulfilling the requirements of the IAEA regulations [1]. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3d- measurements using the projected fringe method in combination with multi-image photogrammetry. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport. Especially to the verification of the dynamic finiteelement model of the package used in the package design safety report [2]. The paper describes the performance of the drop tests, selected test results focusing on the lid screws and the cask body and the deformation of the impact limiters as well as impact kinematics, respectively. T2 - IHLRWM2019 CY - Knoxville, TN, USA DA - 14.04.2019 KW - Drop test KW - Package testing KW - Dual purpose cask PY - 2019 SN - 978-0-89448-761-3 VL - 2019 SP - paper 27283, 1 EP - 7 PB - ANS AN - OPUS4-50619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Scheidemann, Robert A1 - Komann, Steffen A1 - Ballheimer, Viktor A1 - Wille, Frank T1 - Drop Testing of a New Package Design for the Transport of SNF from German Research Reactors T2 - Proceedings of the 18th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 N2 - A new dual purpose cask design was developed for the safe transport and interim storage of spent fuel elements of German research reactors. In the framework of the safety assessment within the package approval procedure the Bundesanstalt für Materialforschung und –prüfung (BAM) as competent authority performed a series of drop tests according with the IAEA Transport Regulations. The package consists of a cylindrical thick-walled ductile cast iron cask body closed by a bolted lid system with metallic seals. A lid and bottom sided impact limiter consisting of a wood/steel construction limit the mechanical impact loading. The full-scale test specimen was equipped with a basket and assembled with dummy-fuel elements. The package and test specimen, respectively have a total mass of approximately 24 metric tons. The mechanical drop test program included three 9m free drop tests, in horizontal, vertical and oblique cask orientation onto the lid system. Additionally, a 1m-puncture bar drop test followed the horizontal drop test to consider an IAEA-drop test sequence. The horizontal and vertical drop tests were performed at a temperature of minus 40°C. During the oblique drop test the upper impact limiter was heated up to +80°C. The tests were conducted onto an unyielding target, fulfilling the IAEA requirements. The test specimen was considerably instrumented with strain gauges and accelerometers. Transient strains at selected locations of the inner and outer container walls, of the primary and secondary lid, as well as of the corresponding lid bolts were measured during the drop tests. Furthermore, decelerations in different locations at the cask body and the lids were measured. The complex geometrical deformation of the impact limiters due to the impact were determined by optical 3D- measurements. Before and after the drop tests the leakage rate of the lid system was determined by helium leakage testing. The experimental results contribute to the evaluation of the package response to mechanical tests, demonstrating safety under normal and accident conditions of transport and especially to the verification of the dynamic finite-element model of the package used in the package design safety report. T2 - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - SNF KW - Drop testing KW - New package design PY - 2019 SP - Paper 19-A-1142,1 EP - 10 AN - OPUS4-50622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Linnemann, Konrad A1 - Müller, Lars A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Wille, Frank T1 - Authority Experience during Design Approval Procedure for Packages Loaded with Special Encapsulations for Damaged Spent Nuclear Fuel T2 - Proceeding of the International Conference on the Management of Spent Fuel from Nuclear Power Reactors N2 - The first German package design approval certificate for a dual purpose cask intended for loading with damaged spent nuclear fuel was issued recently. BAM as part of the competent authority system in Germany carried out a comprehensive assessment procedure with respect to the mechanical and thermal design, the release of radioactive material and the quality assurance aspects of manufacturing and operation. Packages for the transport and storage of radioactive material have been assessed by BAM for many years, thus the common assessment procedure is well-known and good practice. Up to now only SNF without defects or HLW with well-defined properties were designated for long-term Interim storage and transports afterwards. Due to Germany’s nuclear phase out all other kinds of spent nuclear fuel in particular damaged spent nuclear fuel shall be packed as well. Damaged spent nuclear fuel needs a tight closure with Special encapsulations and clearly defined properties in Germany. In addition, these encapsulations shall be long-term durable, because they are not accessible after loading in a packaging within periodical inspections. The main difference to Standard package components is that encapsulations with a permanent closure achieve their specified conditions not after manufacturing but only during operation, after loading and closing. To ensure compliance with the specific conditions, special measures for quality assurance are necessary during operation of each encapsulation, e.g. drying and sealing, which were assessed by BAM. The present paper gives an overview of the conducted assessment from BAM and point out the findings concerning to the special closure lid of the approved encapsulation, which is screwed and welded. A wide verification concept is necessary to show the specific tightness under transport conditions. Together with quality assurance measures during first operation steps these encapsulations with damaged spent nuclear fuel can be handled like standard fuel assemblies in approved package designs. T2 - International Conference on the Management of Spent Fuel from Nuclear Power Reactors CY - Vienna, Austria DA - 24.06.2019 KW - Transport package KW - Design approval KW - Spent nuclear fuel KW - Special encapsulation PY - 2019 SP - 1 EP - 9 AN - OPUS4-48749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schönfelder, Thorsten A1 - Müller, Lars A1 - Komann, Steffen A1 - Wille, Frank ED - Schönfelder, Thorsten T1 - Design assessment of a dual purpose cask for damaged spent nuclear fuel T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 N2 - German package design approvals were granted recently for dual purpose casks (DPC) intended for loading with encapsulated damaged spent nuclear fuel (DSNF). Comprehensive assessment procedures were carried out by the authority BAM with respect to the mechanical and thermal package design, the activity release of radioactive material and quality assurance aspects for manufacturing and operation of each packaging. The objective of each procedure was to verify the Package Design Safety Report (PDSR) and the relevant guidelines fulfils the requirements of the IAEA regulations. Previous approvals of German SNF package designs consider mainly standard fuel assemblies with defined specifications and properties for transport and interim storage. Due to the nuclear power phase-out in Germany all kinds of SNF, e.g. damaged spent fuel rods shall be packed in DPC now. Therefore specific requirements shall be considered in accordance with international experiences including IAEA technical reports. The main requirement for DSNF is a tight encapsulation with specific defined properties under transport and storage conditions. Due to the interim storage period of currently up to 40 years the encapsulation with DSNF in the casks shall also be long term durable. Thus specific loading and drying procedures are necessary and had to be qualified during the approval process. BAM assessed these drying procedures and could confirm the long-term behaviour of the encapsulation and the suitability of the drying equipment. This special equipment was qualified in a “cold handling”. In addition, it was shown that the behaviour of the test equipment used in the qualification process was comparable with the original equipment, e.g. test fuel rods or test encapsulation. In the development of the drying process, experience was obtained in how to put the requirements of the IAEA regulations and related IAEA technical reports into practice. The paper gives an overview of approval assessment and testing experience made by BAM and point out the main resulting requirements on drying processes for these kinds of encapsulations with DSNF. T2 - Proceedings of the 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, USA DA - 04.08.2019 KW - Assessment KW - Dual purpose cask KW - Spent nuclear fuel PY - 2019 SP - Paper 1204, 1 EP - 10 AN - OPUS4-48685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Lars A1 - Scheidemann, Robert A1 - Schönfelder, Thorsten A1 - Komann, Steffen A1 - Wille, Frank T1 - Drop tests assessment of internal shock absorbers for packages loaded with encapsulations for damaged spent nuclear fuel T2 - Pressure Vessels & Piping Conference 2020 N2 - Damaged spent nuclear fuel (DSNF) can be loaded in German dual-purpose casks (DPC) for transport and interim storage. Encapsulations are needed to guarantee a safe handling and a tight closure, separated from the package enclosure. These encapsulations shall be durable and leak-tight for a long storage period, because they are usually not accessible within periodical inspections of the DPC. Due to the general design of DPCs for standard fuel assemblies, specific requirements have to be considered for the design of encapsulations for DSNF to ensure the loading in existing package designs. Especially the primary lid system of a DPC is designed for maximum loads due to the internal impact of the content during drop test conditions. The main difference of encapsulations for damaged spent nuclear fuel is that they have usually a much higher stiffness than standard fuel assemblies. Therefore the design of an internal shock absorber, e.g. at the head of an encapsulation is required to reduce mechanical loads to the primary lid system during impacts. BAM as part of the German competent authority system is responsible for the safety assessment of the mechanical and thermal package design, the release of radioactive material and the quality assurance of package manufacturing and operation. Concerning the mechanical design of the encapsulation BAM was involved in the comprehensive assessment procedure during the package design approval process. An internal shock absorber was developed by the package designer with numerical analyses and experimental drop tests. Experimental drop tests are needed to cover limiting parameters regarding, e.g. temperature and wall thickness of the shock absorbing element to enable a detailed specification of the whole load-deformation behavior of the encapsulation shock absorber. The paper gives an overview of the assessment work by BAM and points out the main findings which are relevant for an acceptable design of internal shock absorbers. The physical drop tests were planned on the basis of pre-investigations of the applicant concerning shape, dimension and material properties. In advance of the final drop tests the possible internal impact behavior had to be analyzed and the setup of the test facility had to be validated. The planning, performance and evaluation of the final drop tests were witnessed and assessed by BAM. In conclusion it could be approved that the German encapsulation system for damaged spent nuclear fuel with shock absorbing components can be handled similar to standard fuel assemblies in existing package designs. T2 - Pressure Vessels & Piping Conference 2020 CY - Online meeting DA - 03.08.2020 KW - Encapsulations for damaged spent nuclear fuel KW - Drop tests KW - Internal shock absorber KW - Design assessment of RAM packages PY - 2020 SP - 1 EP - 9 AN - OPUS4-51546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -